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1 Introduction

We begin with the following motivating question: for which 𝑝 = 𝑝(𝑛) does 𝐺(𝑛, 𝑝) contain a triangle
with probability 1 − 𝑜(1)? By computing first moments, it is not difficult to deduce that if 𝑛𝑝 → 0

then 𝐺(𝑛, 𝑝) is triangle free with probability 1 − 𝑜(1). In this article, we will often be quite loose with
asymptotic notation; for instance we might write the previous sentence as “when 𝑝 = 𝑜(𝑛−1) then 𝐺(𝑛, 𝑝)
is triangle-free with high probability”.

Let us study this question from another angle. Let 𝒜 be the set of all graphs which contain a triangle
as a subgraph.1 Then we are interested in 𝜇𝒜(𝑝) := P𝑍∈𝐺(𝑛,𝑝)[𝑍 ∈ 𝒜] as 𝑝 changes. Clearly, when
𝜇𝒜(0) = 0 and 𝜇𝑐𝐴(1) = 1. As mentioned, first moment calculations shows that when 𝑝 = 𝑜(𝑛−1), we have
𝜇𝒜(𝑝) ≪ 1. What happens to 𝜇𝒜(𝑝) as we increase 𝑝? In general, we show that 𝜇𝒜(𝑝) is increasing in 𝑝
when 𝒜 is an monotone graph property, which we define next.

Definition 1.1. A set of graphs 𝒜 is monotone if 𝐺 ∈ 𝒜 and 𝐺 ⊂ 𝐻 implies that 𝐻 ∈ 𝒜.

Claim 1.2 (Monotonicity of 𝜇𝒜(𝑝)). Let 𝒜 be a monotone graph property. Then 𝜇𝒜(𝑝) (as defined earlier) is a
strictly increasing function of 𝑝.

Proof. Let 0 ≤ 𝑝 < 𝑞 ≤ 1. Note that 𝐵 := 𝐺(𝑛, 𝑞)has the same distribution as the union of two independent
𝐴 := 𝐺(𝑛, 𝑝) and 𝐴′ := 𝐺(𝑛, 𝑝′) where 𝑝′ is such that 1 − 𝑞 = (1 − 𝑝)(1 − 𝑝′). Therefore,

P[𝐴 ∈ 𝒜] < P[𝐴 ∪ 𝐴′ ∈ 𝒜] = P[𝐵 ∈ 𝒜]

where the inequality is strict because with positive probability, 𝐴 ∉ 𝒜 while 𝐴 ∪ 𝐴′ ∈ 𝒜. □

This intuitively seems to suggest that there should be a “phase transition” where for some 𝑝1 < 𝑝2 we
have that 𝜇𝒜(𝑝1) is very close to 0 while 𝜇𝒜(𝑝2) is very close to 1. We make this precise in the following
definition.

Definition 1.3. Let 𝒜 be a graph property. We say that 𝑝(𝑛) is a threshold for 𝒜 if

P[𝐺(𝑛, 𝑞(𝑛)) ∈ 𝒜] →

0 if 𝑞(𝑛)

𝑝(𝑛) → 0,

1 if 𝑞(𝑛)
𝑝(𝑛) → ∞.

It is a well-known theorem of Bollobás and Thomason [BT87] that every sequence of nontrivial
monotone graph properties has a threshold. A way to see this is by plotting 𝜇𝒜(𝑝) against 𝑝.

1Given a set of graphs 𝒜 satisfying some property, we will oftentimes call 𝒜 a graph property.
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Instead of being concerned with exactly where the threshold behavior occurs, we instead endeavor to
study the behavior of the probability plot. In particular, given any graph property 𝒜 we want to be able
to make a guess for which of the plots above (green, red, blue) is most likely to be its “probability-plot”.
Now, the key difference between the three plots above is how sharply the function transitions from 0 to 1.
So our goal is to study what properties of 𝒜 ensures that 𝜇𝒜 turns from 0 to 1 in a small interval, which
we will often call having a sharp transition. We make this notion precise in the following definition.

Definition 1.4. We say that a monotone graph property 𝒜 has a sharp threshold at 𝑝(𝑛) if for every 𝛿 > 0,
we have

P[𝐺(𝑛, 𝑞(𝑛)) ∈ 𝒜] →

0 if 𝑞(𝑛)

𝑝(𝑛) ≤ 1 − 𝛿,

1 if 𝑞(𝑛)
𝑝(𝑛) ≥ 1 − 𝛿.

On the other hand, if there is some fixed 𝜀 > 0 and 0 < 𝑐 < 𝐶 such that P[𝐺(𝑛, 𝑞(𝑛)) ∈ 𝒜] ∈ (𝜀, 1 − 𝜀)
whenever 𝑐 ≤ 𝑞(𝑛)

𝑝(𝑛) ≤ 𝐶 then we say that 𝑝(𝑛) is a coarse threshold.

Another way to study this problem is to encode the graph as a Boolean string {0, 1}(𝑛2): label the
edges of the graph 1, . . . ,

(𝑛
2

)
and the 𝑖th bit of this Boolean string is 1 if the 𝑖th edge is present. Then 𝒜

corresponds to a Boolean function 𝑓 : {0, 1}(𝑛2) → {0, 1}. In the input string, the 𝑖th bit is 1with probability
𝑝 and the bits are all independent. In other words, we are endowing {0, 1}(𝑛2) with the 𝑝-biased measure.
It is therefore conceivable that 𝑝-biased Fourier analysis would be relatively useful. In the next subsection
we give a quick overview of some concepts from Boolean Fourier analysis and refer the interested reader
to [O’D14] for a more thorough overview.

1.1 Boolean Fourier analysis background

Henceforth we often freely interchance between the additive {0, 1}𝑛 Boolean hypercube and the multi-
plicative {±1}𝑛 version where to go from the former to the latter we consider the map 𝑏 ↦→ (−1)𝑏 .
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We write 𝜎 =
√
𝑝(1 − 𝑝). For each 𝑖 ∈ [𝑛] we define 𝜒𝑖 : {0, 1}𝑛 → R by 𝜒𝑖 (𝑥) = 𝑥𝑖−𝑝

𝜎 . In particular, 𝜒𝑖
has mean 0 and variance 1).

It is well known that there is the following orthonormal Fourier basis {𝜒𝑆}𝑆⊂[𝑛] of 𝐿2
(
{0, 1}𝑛 , 𝜇𝑝

)
,

where each 𝜒𝑆 :=
∏

𝑖∈𝑆 𝜒𝑖 . Any 𝑓 : {0, 1}𝑛 → R has a unique expression 𝑓 =
∑
𝑆⊂[𝑛] 𝑓̂ (𝑆)𝜒𝑆 where

{ 𝑓 (𝑆)}𝑆⊂[𝑛] are the 𝑝-biased Fourier coefficients of 𝑓 . When 𝑝 = 1
2 this Fourier expansion has a rather nice

interpretation: the Fourier expansion of 𝑓 : {±1}𝑛 → R as

𝑓 (𝑥) =
∑
𝑆⊂[𝑛]

𝑓̂ (𝑆)𝜒𝑆(𝑥) =
∑
𝑆⊂[𝑛]

𝑓̂ (𝑆)
∏
𝑖∈𝑆

𝑥𝑖

corresponds to the multilinear expansion of 𝑓 .
The Plancherel’s identity ⟨ 𝑓 , 𝑔⟩ =

∑
𝑆⊂[𝑛] 𝑓̂ (𝑆)𝑔̂(𝑆) is a consequence of the orthonormality of the

Fourier characters. A special case of Plancherel’s identity is Parseval’s identity E[ 𝑓 2] = ∥ 𝑓 ∥22 = ⟨ 𝑓 , 𝑓 ⟩ =∑
𝑆⊂[𝑛] 𝑓̂ (𝑆)2. As shorthand we will also often write 𝜇𝑝( 𝑓 ) = E𝑥∼𝜇⊗𝑛

𝑝
[ 𝑓 (𝑥)]. We also define the notion

of restricting a function as follows: for a function 𝑓 : {±1}𝑛 → R, a set of coordinates 𝐽 ⊂ [𝑛] and an
assignment to them 𝑧 ∈ {±1}𝐽 . The restricted function 𝑓𝐽→𝑧 : {±1}𝐽 → R is defined by

𝑓𝐽→𝑧(𝑦) = 𝑓 (𝑥𝐽 = 𝑧, 𝑥
𝐽
= 𝑦).

We will often we studying the low-degree component of functions 𝑓 : {0, 1}𝑛 → R, which corresponds
to a suitable truncation of 𝑓 which we define next. For 𝒮 ⊂ {0, 1}𝑛 we define the 𝒮-truncation 𝑓 𝒮 :=∑
𝑆∈𝒮 𝑓̂ (𝑆)𝜒𝑆. When we talk about the low degree component of a function we are referring to truncating

according to some degree threshold 𝑟, for which we write 𝑓 ≤𝑟 =
∑

|𝑆 |≤𝑟 𝑓̂ (𝑆)𝜒𝑆.
For 𝑖 ∈ [𝑛], the 𝑖-derivative 𝜕𝑖 𝑓 and 𝑖-influence 𝐼𝑖( 𝑓 ) of 𝑓 are defined as

𝜕𝑖 𝑓 = 𝜎
(
𝑓𝑖→1 − 𝑓𝑖→0

)
=

∑
𝑆:𝑖∈𝑆

𝑓̂ (𝑆) 𝜒𝑆\{𝑖}

and
𝐼𝑖 ,𝑝( 𝑓 ) = ∥ 𝑓𝑖→1 − 𝑓𝑖→0∥22 = 𝜎−2 E[ 𝑓 2𝑖 ] = 1

𝑝(1−𝑝)

∑
𝑆:𝑖∈𝑆

𝑓̂ (𝑆)2.

We define the (total) influence of 𝑓 as

𝐼𝑝( 𝑓 ) =
∑
𝑖

𝐼𝑖( 𝑓 ) = (𝑝(1 − 𝑝))−1
∑
𝑆

|𝑆 | 𝑓̂ (𝑆)2. (1)

where we sometimes suppress the subscript of 𝑝 on 𝐼𝑝 when it is clear what the parameter 𝑝 is.
An important operator in the theory of Boolean function is the noise operator𝑇𝜌 which we next define.

It will show up implicitly in the version of hypercontractive inequalities that we state (see Remark 2.11).

Definition 1.5 (Noise operator). For 𝑥 ∈ {0, 1}𝑛 , we define the 𝜌-correlated distribution 𝑁𝜌(𝑥) on {0, 1}𝑛 :
a sample 𝑦 ∼ 𝑁𝜌(𝑥) is obtained by setting 𝑦𝑖 = 𝑥𝑖 with probability 𝜌 and otherwise with probability 1− 𝜌

we resample 𝑦𝑖 according to 𝜇𝑝 , executing this process independently for each coordinate 𝑖. We define
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the noise operator 𝑇𝜌 on 𝐿2({0, 1}𝑛 , 𝜇⊗𝑛
𝑝 ) to be

𝑇𝜌( 𝑓 )(𝑥) = E
𝑌∼𝑁𝜌(𝑥)

[ 𝑓 (𝑦)].

Each of the above identities can be checked easily; we omit their proofs and refer the reader to [O’D14].

1.2 Why 𝑝-biased Boolean Fourier analysis is relevant to thresholds: Russo-Margulis Lemma

As a taster for the power of Boolean Fourier analysis techniques, we show how understanding the total
influence of a function gives us information about thresholds.

Theorem 1.6 (Russo-Margulis Lemma [Mar74, Rus82]). Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function.
Then

𝑑

𝑑𝑝
𝜇𝑝( 𝑓 ) = 𝐼𝑝[ 𝑓 ].

Effectively, the Russo-Margulis Theorem states that if 𝑓 has large total influence then it has a sharp
threshold. I learnt of the following proof from the class I took with Minzer [Min21].

Proof. Take 𝜀 to be very small and we sample (𝑥, 𝑦) in a coupled way so that marginally 𝑥 ∼ 𝜇⊗𝑛
𝑝 , 𝑦 ∼ 𝜇⊗𝑛

𝑝+𝜀
and 𝑥 ≤ 𝑦 always. (This can be done for instance by sampling 𝑥 ∼ 𝜇⊗𝑛

𝑝 , and then for each 𝑖, if 𝑥𝑖 = 1 we
set 𝑦𝑖 = 1, while if 𝑥𝑖 = 0 then we take 𝑦𝑖 = 1 with probability 𝜀/(1 − 𝑝).)

Now, we have

𝜇𝑝+𝜀( 𝑓 ) − 𝜇𝑝( 𝑓 ) = E
(𝑥,𝑦)

[ 𝑓 (𝑥) − 𝑓 (𝑦)] = E
(𝑥,𝑦)

[( 𝑓 (𝑥) − 𝑓 (𝑦))1𝑥≠𝑦].

Since the probability that 𝑥 and 𝑦 differ in more than a single coordinate is at most 𝑛2𝜀2, it follows that

𝜇𝑝+𝜀( 𝑓 ) − 𝜇𝑝( 𝑓 ) −
𝑛∑
𝑖=1

E
(𝑥,𝑦)

[( 𝑓 (𝑥) − 𝑓 (𝑦))1𝑥,𝑦 differ only at 𝑖] ≤ 𝑛2𝜀2.

But we also have

E
(𝑥,𝑦)

[( 𝑓 (𝑥) − 𝑓 (𝑦))1𝑥,𝑦 differ only at 𝑖] = (𝜀 − P[𝑥, 𝑦 differ in ≥ 2 coordinates]) 𝐼𝑖 ,𝑝[ 𝑓 ].

Putting it all together, we have

𝜇𝑝+𝜀( 𝑓 ) − 𝜇𝑝( 𝑓 ) − 𝜀𝐼𝑝[ 𝑓 ] ≤ 𝑛2𝜀2 + 𝑛3𝜀2.

Now divide by 𝜀 and take 𝜀 → 0 to get the desired conclusion. □

2 Friedgut-Bourgain sharp threshold theorem

The seminal work [Fri99] completely characterizes when a threshold of a graph property is sharp/coarse.
Roughly speaking, the theorem states that all monotone graph properties with a coarse threshold can be
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approximated by a “local property”. In this section, we aim to give an exposition of this result. In the
upcoming sections, we will apply this result to prove the sharp threshold of several graph properties.

In the following subsections, we aim to give a full proof of the following theorem.

Theorem 2.1. Let 𝒜 be a graph property with a coarse threshold. Then there exists 𝑝 = 𝑝(𝑛), 𝜀 > 0 and a fixed
graph 𝑀 with P[𝑀 ∈ 𝐺(𝑛, 𝑝)] > 𝜀 such that with probability at least 𝜀 both of the following hold for 𝑍 ∼ 𝐺(𝑛, 𝑝):

P[𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ∈ 𝒜|𝑍] ≤ 1

2

(here the randomness is over 𝐺(𝑛, 𝜀𝑝)) and

P𝜑[𝑍 ∪ 𝜑(𝑀) ∈ 𝒜|𝑍] ≥ 𝜀,

(here the randomness is over 𝜑) where 𝜑(𝑀) is a uniformly random copy of 𝑀 in 𝐾𝑛 .

Remark 2.2. A word on notation: 𝑎𝑍 := P[𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ∈ 𝒜|𝑍] and 𝑏𝑍 := P𝜑[𝑍 ∪ 𝜑(𝑀) ∈ 𝒜|𝑍] ≥ 𝜀 is a
random variable in 𝑍. The statement is saying that P𝑍∼𝐺(𝑛,𝑝)[𝑎𝑍 ≤ 1

2 and 𝑏𝑍 ≥ 𝜀] ≥ 𝜀.

An informal way to think about this theorem is that sprinkling constantly many edges “in a particular
pattern” can boost the probability of being 𝒜 much more than adding 𝜀𝑝

(𝑛
2

)
random edges, and this

pattern is given by the Magical graph 𝑀.

Remark 2.3. The version of the theorem we stated here is actually weaker than the version which Friedgut
proves. In [Fri99], Friedgut shows that if 𝒜 is a monotone graph property, let 0 < 𝛼 < 1 and suppose
𝑝 is such that 𝛼 < P𝑍∼𝐺(𝑛,𝑝)[𝑍 ∈ 𝒜] < 1 − 𝛼, then for every 𝜀 > 0, we can find a fixed graph 𝑀 such
that P𝑍∼𝐺(𝑛,𝑝)[𝑍 ∈ 𝒜|𝑀 ∈ 𝑍] ≥ 1 − 𝜀 where the notation means the property that 𝑍 ∈ 𝒜 conditioned on
the appearance of a specific copy of 𝑀. That is, Friedgut manages to find a graph 𝑀 that gives a boost
in probability of belonging in 𝒜 till it becomes close to 1, while we only get a 𝛿 boost. Friedgut’s proof
relies rather heavily on the inherent graph symmetry. For all applications Theorem 2.1 suffices and so
we contend ourselves to proving this weaker version.

As indicated in Section 1.1, we can study the threshold of a graph property using Boolean Fourier
analysis. In order to prove Theorem 2.1, we will first prove a sharp threshold theorem that holds for any
monotone Boolean function – this is (a strengthened version of) Bourgain’s sharp threshold theorem.

Theorem 2.4 ((Strengthened) Bourgain’s Sharp Threshold Theorem). For any monotone Boolean function
𝑓 : {0, 1}𝑛 → R such that 0 < 𝜇𝑝( 𝑓 ) =: 𝛼 < 1 and 𝑝𝐼[ 𝑓 ] ≤ 𝐾𝛼(1 − 𝛼), there exists a set 𝐽 of 𝑂(𝐾) coordinates
such that 𝜇𝑝( 𝑓𝐽→1) ≥ 𝛼 + exp(−𝑂(𝐾)).

Remark 2.5. Bourgain’s original proof gives the bound𝜇𝑝( 𝑓𝐽→1) ≥ 𝛼+exp(−𝑂(𝐾2)). This was strengthened
to Theorem 2.4 in [KLLM24]; it is also shown in [KLLM24] that this bound is best possible.

We then show how to utilize the additional symmetries inherited by a Boolean function on graph
properties (provided by automorphisms in the underlying graph) in order to boost the conclusions of
Theorem 2.4 to obtain Theorem 2.1. We also note that the condition of 𝑝𝐼[ 𝑓 ] ≤ 𝐾𝜇𝑝( 𝑓 )(1 − 𝜇𝑝( 𝑓 )) is not
as artificial as it looks: by the Russo-Margulis formula, if 𝑓 was the indicator of an increasing graph
property then it would automatically imply this condition.
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2.1 Proof of Bourgain’s sharp threshold theorem

In this subsection, we prove Theorem 2.4. There exists many expositions of Bourgain’s sharp threshold
theorem (see [Bal13, O’D14, Lac22], just to name a few). We will take a historically inaccurate and
therefore slightly different approach as compared to these expositions. That said, our exposition is very
much inspired by [O’D14].

Roadmap. The 𝑝-biased Fourier analysis is quite unintuitive, and so we will start off by studying the
situation with a uniform distribution over the Boolean hypercube (i.e. 𝑝 = 1

2 ). By invoking what we
have seen in Subsection 1.2, we show that in this context a sharp threshold result is implied by Friedgut’s
junta theorem [Fri98] (see Theorem 2.9). We then give a proof of Friedgut’s junta theorem by using the
hypercontractivity inequality (Bonami-Beckner inequality) [Bon70, Bec75, Gro75] (see Lemma 2.10). We
next explore why these fail to generalize in the regime where 𝑝 ≲ 𝑛−1. This will motivate the correct
form of the hypercontractivity inequality (Theorem 2.16). Finally, we deduce Theorem 2.4 from the
corresponding hypercontractivity inequality, in the same spirit that we derived Friedgut’s junta theorem
from the classical hypercontractivity inequality.

Remark 2.6. Historically the developments of the 𝑝-biased hypercontractivity inequality/global hyper-
contractivity inequality [KLLM24, Zha21]) came after [Fri99].

Remark 2.7. Another reason for presenting the proof in this slight roundabout fashion is that variants
of Theorem 2.16 have found many applications in additive combinatorics [BKM23, EKL24], group the-
ory/probability [KLS23, EKLM24], extremal combinatorics [KLLM21, Zak23], and various other fields
of theoretical computer science [KM22].

2.1.1 Uniform distribution over F𝑛2 .

As expounded upon in Section 1.1, the Fourier basis for the uniform distribution - which corresponds to
the characters of the additive group - are more interpretable and the Fourier expansion corresponds to
the multilinear expansion.

Let us recall the set-up: we have a monotone function 𝑓 : F𝑛2 → {0, 1}. As we increase 𝑝 from 0 to 1,
we are interested in whether P𝑥∼𝜇𝑛𝑝 [ 𝑓 (𝑥) = 1] has a sharp threshold around the critical probability 𝑝𝑐 = 1

2 .
Henceforth we work with the multiplicative notion and consider 𝑓 : {±1}𝑛 → {±1}. As we have seen in
Sub-section 1.2, vaguely speaking a sharp transition occurs if and only if 𝐼𝑝𝑐 [ 𝑓 ] is large (on the order of
Ω(1)) at the threshold probability 𝑝𝑐 . This motivates us to understand the converse problem: what is the
structure of Boolean functions with influence 𝑂(1)?

The most obvious examples that come to mind are the 𝑘-juntas for some 𝑘 = 𝑂(1):

Definition 2.8. A function 𝑓 : {±1}𝑛 → {±1} is a 𝑘-junta for 𝑘 ∈ N if it depends on at most 𝑘 coordinates.
That is, 𝑓 (𝑥) = 𝑔(𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) for some 𝑔 : {±1}𝑘 → {±1} and 𝑖1 , . . . , 𝑖𝑘 ∈ [𝑛].

Are there any other such examples? It turns out that (in some sense) there are not, and this is the
content of Friedgut’s junta theorem.

Theorem 2.9. Let 𝑓 : {±1}𝑛 → {±1} Then for every 𝜀 > 0, there exists a 𝑘-junta 𝑔 : {±1}𝑘 → {±1} such that

𝑘 ≤ 2
𝑂

(
𝐼( 𝑓 )
𝜀

)
and ∥ 𝑓 − 𝑔∥2 ≤ 𝜀.
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The most intuitive construction for 𝑔 is to build it out of the most influential coordinates of 𝑓 and then
round appropriately to ±1. This is exactly the approach that we take. It will become clear in the proof
that we need to handle the Fourier coefficients 𝑓̂ (𝑆) where |𝑆 | is large differently from those when |𝑆 | is
small. When |𝑆 | is small, the key idea is (roughly) the fact that “low-degree polynomials are smooth",
captured in the following hypercontractive inequality.

Lemma 2.10 (Bonami-Beckner/Hypercontractive inequality). For any 𝑓 : {±1}𝑛 → R and any 𝑟 ≤ 𝑛, we
have 

 𝑓 ≤𝑟



4
≤
√
3
𝑟 

 𝑓 ≤𝑟



2
.

Remark 2.11. We will not prove this fact, but it turns out that the hypercontractive inequality is equivalent
to small-set expansion, the latter is more geometric and is perhaps a more illuminative illustration of
content of the theorem. Roughly speaking, we say that 𝐴 has 𝜌-small set expansion if the probability of
the following random walk starting in 𝐴 landing outside 𝐴 is high: the random walk where each bit is
marked with probability 1 − 𝜌 and the removed bit is re-sampled uniformly. Precisely, suppose 𝑦 is the
next step of this random walk from 𝑥, then if |𝐴| = 𝛼2𝑛 , we say that 𝐴 satisfies 𝜌-small set expansion if

P[𝑦 ∈ 𝐴|𝑥 ∈ 𝐴] ≤ 𝛼
1−𝜌
1+𝜌 .

In the final stages, we will need the following simple consequence of Hölder’s inequality.

Lemma 2.12. Let 𝑓 : {0, 1}𝑛 → {−1, 0, 1}. Let 𝒮 ⊂ 𝒫([𝑛]) and let 𝑔(𝑥) = ∑
𝑆∈𝒮 𝑓̂ (𝑆)𝜒𝑆(𝑥). Then

∥𝑔∥22 ≤ ∥𝑔∥4 ∥ 𝑓 ∥
3/2
2 .

Here we let the image of 𝑓 be in {−1, 0, 1} because as we will see, we apply this lemma to 𝜕𝑖 𝑓 for a
Boolean function 𝑓 which has image not in {−1, 1} but rather {−1, 0, 1}.

Proof. By first applying Plancherel’s and Hölder’s inequality, we can write

E[𝑔2] =
∑
𝑆∈𝒮

𝑓̂ (𝑆)2

= ⟨ 𝑓 , 𝑔⟩
≤ ∥ 𝑓 ∥4/3 ∥𝑔∥4 .

But since the image of 𝑓 lies in {−1, 0, 1}, it follows that ∥ 𝑓 ∥4/3 = (E 𝑓 2)3/4 = ∥ 𝑓 ∥3/22 . Putting these
together gives the desired inequality. □

Remark 2.13. We did not use any property of the norm defined over 𝜇1/2. In particular, this means that
Lemma 2.12 continues to hold in the 𝑝-biased setting as well.

By combining Lemma 2.12 and Lemma 2.10, we obtain the following version of the hypercontractivity
inequality which we utilize in the sequel.

Corollary 2.14. For any 𝑓 : {±1}𝑛 → {−1, 0, 1} and any 𝑟 ≤ 𝑛, we have

 𝑓 ≤𝑟


2
≤
√
3
𝑟
∥ 𝑓 ∥3/22 .
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Proof. We write 

 𝑓 ≤𝑟

2
2
≤



 𝑓 ≤𝑟


4
∥ 𝑓 ∥3/22 ≤

√
3
𝑟 

 𝑓 ≤𝑟



2
∥ 𝑓 ∥3/22 .

Rearranging, we get 

 𝑓 ≤𝑟


2
≤
√
3
𝑟
∥ 𝑓 ∥3/22 ,

as desired. □

Proof of Theorem 2.9. Let 𝐶 > 0 be an absolute constant to be determined, let 𝛿 = 2−𝐶
𝐼( 𝑓 )
𝜀 and define the set

of influential coordinates
𝐽 = {𝑖 : 𝐼𝑖[ 𝑓 ] ≥ 𝛿}.

Let𝐺(𝑥) = ∑
𝑆⊂𝐽 ,|𝑆 |≤

2𝐼[ 𝑓 ]
𝜀

𝑓̂ (𝑆)𝜒𝑆(𝑥) and define 𝑔(𝑥) = sign(𝐺(𝑥)). It is by definition clear that |𝐽 | ≤ 2(𝐶+1)
𝐼[ 𝑓 ]
𝜀

and ∥ 𝑓 − 𝑔∥2 ≤ 2 ∥ 𝑓 − 𝐺∥2.
A vanilla way to bound ∥ 𝑓 − 𝐺∥2 is to write using Parseval’s and the fact that 𝐼𝑖[ 𝑓 ] =

∑
𝑖∈𝑆 𝑓̂ (𝑆)2 ≤ 𝛿

for 𝑖 ∉ 𝐽:
∥ 𝑓 − 𝐺∥22 =

∑
𝑆⊄𝐽

𝑓̂ (𝑆)2 ≤
∑
𝑖∉𝐽

∑
𝑆∋𝑖

𝑓̂ (𝑆)2 ≤ 𝑛𝛿

which is unfortunately too lossy for our purposes. Upon closer inspection, it is because we are doing
way too much double counting in the first inequality, especially for Fourier coefficients 𝑓̂ (𝑆) where |𝑆 | is
large. Let 𝑀 =

2𝐼[ 𝑓 ]
𝜀 . Then, for the large Fourier coefficients we can write∑

|𝑆 |≥𝑀
𝑓̂ (𝑆)2 ≤ 1

𝑀

∑
𝑆

|𝑆 | 𝑓̂ (𝑆)2 =
𝐼[ 𝑓 ]
𝑀

.

It remains to bound
∑

𝑆⊄𝐽
|𝑆 |≤𝑀

𝑓̂ (𝑆)2 ≤ ∑
𝑖∉𝐽

∑
𝑆∋𝑖

|𝑆 |≤𝑀
𝑓̂ (𝑆)2. To that end, we apply Lemma 2.14 to 𝜕𝑖 𝑓 ≤𝑀 . This

is because we have 𝜕𝑖𝑥𝑆 =


𝑥𝑆\{𝑖} if 𝑖 ∈ 𝑆,
0 otherwise,

which combined with linearity furnishes the identity

𝐼𝑖[ 𝑓 ] =
∑
𝑆∋𝑖

𝑓̂ (𝑆)2 = ∥𝜕𝑖 𝑓 ∥22

indicating that 𝜕𝑖 𝑓 are good functions to work with to pick our Fourier coefficients containing a particular
element. That is, by Lemma 2.14 it follows that∑

𝑆∋𝑖
|𝑆 |≤𝑀

𝑓̂ (𝑆)2 =


𝜕𝑖 𝑓 ≤𝑀

2

2
≤
√
3
𝑀
∥𝜕𝑖 𝑓 ∥3/22 =

√
3
𝑀
𝐼𝑖[ 𝑓 ]3/2 ,

which in turn implies that ∑
𝑆⊄𝐽

|𝑆 |≤𝑀

𝑓̂ (𝑆)2 ≤
√
3
𝑀 ∑

𝑖∉𝐽

𝐼𝑖[ 𝑓 ]3/2 ≤
√
3
𝑀√

𝛿𝐼[ 𝑓 ].
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Now, putting all these estimates together, we obtain

∥ 𝑓 − 𝐺∥22 ≤ 𝐼[ 𝑓 ]
𝑀

+
√
3
𝑀√

𝛿𝐼[ 𝑓 ] ≤ 𝜀
2
+ 𝜀

2
= 𝜀,

by taking 𝑀 =
2𝐼[ 𝑓 ]
𝜀 . □

2.1.2 𝑝-biased setting.

First, let us consider whether the above argument generalizes. Consider the following “dictatorship
function” (this name arising because we can think of a Boolean function as effectively giving a scheme
to aggregate votes in an election) 𝑓 : {±1}𝑛 → {±1} given by 𝑓 (𝑥) = 𝑥1. Let us consider Corollary 2.14
for this choice of 𝑓 with the biased 𝜇𝑝-measure. The easiest way to see that we should not expect a
statement like Corollary 2.14 to hold for the dictatorship is by using the equivalence with the geometric
property of small-set expansion as stated in Remark 2.11. Indeed, the subset 𝐴 of the Boolean hypercube
corresponding to where 𝑓 evaluates to 1 is small: it is at most 𝑝 fraction of the entire cube. However, the
𝜌-noisy-process stays within 𝐴 with probability 𝜌, instead of leaving the set 𝐴 almost surely, with the
latter what we would expect from a function satisfying a hypercontractivity inequality. Given that the
hypercontractivity inequality is at the heart of our proof of Theorem 2.9, this suggests a real difficulty in
generalizing the previous argument to the 𝜇𝑝 setting.

Upon closer examination, there is another more subtle reason why the analogy of Theorem 2.9 breaks:
consider the function 𝑓 : {±1}𝑛 → {±1} that evaluates to 1 if and only if its input string 𝑥 contains at least
one coordinate 𝑖 such that 𝑥𝑖 = 1. It’s not difficult to see that when 𝑝 = 𝑂(𝑛−1), 𝑓 is very “diffuse” in the
sense that 𝑓 is not 0.001-close to any junta on 𝑜(𝑛) coordinates.

More precisely, there is this sort of slightly counterintuitive dichotomy in the setting of 𝜇𝑝 with 𝑝 =

𝑂(𝑛−1): we expect “global functions” (such as the OR example above) to have large total influence/satisfy
a hypercontractive inequality of some sort; on the other hand, we would expect “local functions” (such
as the dictator) to be not expanding/not satisfy a hypercontractive inequality/be “obstructions” of
some form. And vaguely we can see the threshold theorem taking form – Russo-Margulis implies that
graph properties with coarse thresholds should have corresponding indicator functions with small total
influence, and our heuristic implies that this means the indicator function must be “local” and these
“local” coordinates correspond to the Magic subgraph 𝑀.

Remark 2.15. We chose to present the proof following [Zha21] rather than [KLLM24] because upon closer
inspection one can note that the proof directly generalizes to any product distribution; conversely, the
proof in [KLLM24] is more specific to the 𝑝-biased set-up.

As in the case of 𝜇1/2, the most important step is to establish a suitable “global hypercontractivity”
inequality.

Theorem 2.16 (Global Hypercontractivity). [Zha21, Lemma 2.1.4] For any 𝑓 ∈ 𝐿2({±1}𝑛 , 𝜇⊗𝑛
𝑝 ) and any 𝑟 ≤ 𝑛,

we have 

 𝑓 ≤𝑟

4
4
≤ 𝐶 𝑖



 𝑓 ≤𝑟

2
2
max
𝐽 ,𝑦

|𝐽 |=𝑟



 𝑓𝐽→𝑦𝐽



2
2

for some absolute constant 𝐶 > 0.
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Here 𝑓𝐽→𝑦𝐽 encodes the heuristic that we should only expect such a hypercontractivity statement to
hold in the case of 𝑓 being a global function: if 𝑓 was a “local” Boolean function (that “depends on the
setting of few coordinates”), then we would expect the existence of some 𝐽 and 𝑦𝐽 such that 𝑓𝐽→𝑦𝐽 to be
constant 1 and therefore the right hand side of Theorem 2.16 to be large.

To prove Theorem 2.16, the idea is to construct a “cousin” 𝑓̃ of 𝑓 through a trick known as symmetriza-
tion so that 𝑓̃ can be thought of as living on the Boolean hypercube. This symmetrization trick works on
any product space.

In the following, let 𝑓 =
∑
𝑆⊂[𝑛] 𝑓

=𝑆 be the Efron-Stein decomposition over this product space
(see [O’D14, Chapter 8] for an extended exposition). Over the Boolean hypercube, this decomposi-
tion corresponds to the usual Fourier decomposition; that is, over the Boolean hypercube we have
𝑓 =𝑆 = 𝑓̂ (𝑆)𝜒𝑆. In the general product space context, the noise operator 𝑇𝜌 can be defined to be
𝑇𝜌( 𝑓 )(𝑥) =

∑
𝑇⊂[𝑛](1 − 𝜌)𝑛−|𝑇 |𝜌|𝑇 | E[ 𝑓 (𝑧)|𝑧𝑇 = 𝑥𝑇] and it is an exercise to check that over the cube we

recover Definition 1.5.

Definition 2.17. Let 𝑓 ∈ 𝐿2(Ω𝑛 ,𝜋𝑛) be any function over a product space. The symmetrization of 𝑓 ,
denoted by 𝑓̃ ∈ 𝐿2({−1, 1}𝑛 ×Ω𝑛 , 𝜇⊗𝑛

1/2 ⊗ 𝜋⊗𝑛) is given by

𝑓̃ (𝑟, 𝑥) =
∑
𝑆⊂[𝑛]

𝑟𝑆 𝑓
=𝑆(𝑥).

In this way, we can then apply the usual hypercontractivity inequality (Lemma 2.10) to 𝑓̃ , and then
we show that the 𝑞th moments of 𝑓 and 𝑓̃ are roughly the same and so we can suitably “pullback”
Lemma 2.10 to obtain a hypercontractivity inequality for 𝑓 .

But first, let us work out an explicit example of symmetrization to gain some intuition for how it
works.

Example 2.18. Let us study what happens to a Boolean function 𝑓 : {±1}𝑛 → R under the process of
symmetrization:

𝑓 (𝑥) =
∑
𝑆⊂[𝑟]

𝑓̂ (𝑥)
∏
𝑖∈𝑆

𝑥𝑖

has corresponding symmetrization given by

𝑓̃ (𝑟, 𝑥) =
∑
𝑆⊂[𝑛]

𝑓̂ (𝑆)
∏
𝑖∈𝑆

𝑟𝑖𝑥𝑖 =
∑
𝑆⊂[𝑛]

𝑓̂ (𝑆)𝑥𝑆𝑟𝑆 .

Since 𝑥𝑖 is a symmetric random variable, it follows that 𝑥𝑖 ∼ 𝑟𝑖𝑥𝑖 so in fact 𝑓 ∼ 𝑓̃ .

Remark 2.19. More generally, if 𝑓 has Fourier expansion consisting of only symmetric basis functions then
𝑓̃ ∼ 𝑓 and so all the 𝑞th norms of 𝑓 and 𝑓̃ coincide.

Another way to think about 𝑓̃ is that fixing a 𝑦 ∈ Ω𝑛 , we have that 𝑓̃𝑥→𝑦 is the Boolean function whose
Fourier coefficient is 𝑓 =𝑆(𝑥). A consequence of Parseval’s identity that the second moments of 𝑓 and 𝑓̃

always coincide:

Claim 2.20. Let 𝑓 ∈ 𝐿2(Ω𝑛 ,𝜋⊗𝑛) and let 𝑓̃ be its symmetrization. Then



 𝑓̃ 




2
= ∥ 𝑓 ∥2.
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However, in general we would not expect 𝑓̃ and 𝑓 to agree on the 𝑞th moments, but it turns out that
we can sandwich 𝑓 between symmetrized applications of the noise operator 𝑇𝜌.

Theorem 2.21. [Bou80] Let 𝑓 ∈ 𝐿2(Ω𝑛 ,𝜋⊗𝑛) be any function over a product space and 𝑞 > 1. Then


𝑇𝑐𝑞 𝑓 



𝑞
≤ ∥ 𝑓 ∥𝑞 ≤




𝑇2 𝑓 



𝑞

for some constant 0 ≤ 𝑐𝑞 ≤ 1 dependent only on 𝑞.

We only prove the upper bound in Theorem 2.21 which is all we need in the sequel, and refer the
interested reader to [Bou80] for the proof of the lower bound. In order to gain some intuition for this
statement, we define the “coordinate-by-coordinate” noise operator as follows, and show how this is
related to the symmetrization operation.

Definition 2.22. For any 𝑖 ∈ [𝑛] and 𝜌 ∈ R, we define

𝑇 𝑖𝜌( 𝑓 ) :=
∑
𝑆∌𝑖

𝑓 =𝑆 +
∑
𝑆∋𝑖

𝜌 𝑓 =𝑆 .

This coordinate-wise noise operator gives us a nice reformulation of symmetrization. Indeed, for
𝑟 = (𝑟1 , . . . , 𝑟𝑛) ∈ {±1}𝑛 , we have

𝑇𝑟 𝑓 (𝑥) = 𝑇1
𝑟1
. . . 𝑇𝑛𝑟𝑛 𝑓 (𝑥) =

∑
𝑆⊂[𝑛]

𝑟𝑆 𝑓
=𝑆(𝑥) = 𝑓̃ (𝑟, 𝑥).

This means that we should think of symmetrization as smoothing but with the vector 𝑟 ∈ {±1}𝑛 . As
a first step to proving the upper bound of Theorem 2.4, we first rewrite it as

𝑇1/2 𝑓 (𝑥)

𝑞 ≤ 


E

𝑟
𝑇𝑟 𝑓 (𝑥)





𝑞

which suggests that we should compare 𝑇1/2 with 𝑇𝑟 for 𝑟 ∈ {±1}. By thinking of the “smoothing”
properties of the noise operator 𝑇𝜌, it is probably unsurprising that the following claim is true.

Claim 2.23. For any 𝑓 ∈ 𝐿2(Ω,𝜋), we have for 𝑟 uniformly random over ±1,

𝑇1/2 𝑓 

𝑞 ≤ ∥𝑇𝑟 𝑓 ∥𝑞 .

Proof. This hypercontractivity statement is really about random variables. Consider the decomposition
𝑓 (𝑥) = 𝑓 ∅(𝑥) + 𝑓 =1(𝑥) so that 𝑇𝛼 𝑓 (𝑥) = 𝑓 ∅(𝑥) + 𝛼 𝑓 =1(𝑥) =: 𝑍1 + 𝛼𝑍2. Let 𝑍′

2 be an independent copy of
𝑍2. Then because E[𝑍2] = E[𝑍′

2] = 0, we can write

𝑍1 + 1
2𝑍2




𝑞
= E[

��𝑍1 + 1
2𝑍2 − 1

2 E[𝑍
′
2]
��𝑞]

= E
[��E [

𝑍1 + 1
2𝑍2 − 1

2𝑍
′
2

] ��𝑞]
≤ E

[
(𝑍1 + 1

2 (𝑍2 − 𝑍′
2))𝑞

]
≤



𝑍1 + 1
2 (𝑍2 − 𝑍′

2)



𝑞
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where the first inequality follows from Jensen’s inequality. The upshot of doing this is that 𝑍2 − 𝑍′
2 is

now a symmetric random variable, and in particular we know that for a symmetric random variable 𝑥,
we have 𝑥 ∼ 𝑟𝑥 for 𝑟 ∈ {−1,+1}. Consequently, we can write

𝑍1 + 1

2𝑍2




𝑞
≤



𝑍1 + 1
2 (𝑍2 − 𝑍′

2)



𝑞

≤


𝑍1 + 𝑟

2 (𝑍2 − 𝑍′
2)



𝑞

=


(12𝑍1 + 𝑟

2𝑍2) + (12𝑍1 − 𝑟
2𝑍

′
2)



𝑞

≤


1
2𝑍1 + 𝑟

2𝑍2




𝑞
+



1
2𝑍1 − 𝑟

2𝑍
′
2




𝑞

=


1
2𝑍1 + 𝑟

2𝑍2




𝑞
+



1
2𝑍1 + 𝑟

2𝑍
′
2




= ∥𝑇𝑟 𝑓 ∥𝑞 .

as desired, where the third inequality follows from the triangle inequality and the fourth equality follows
from 𝑟 ∼ −𝑟. □

With this result in hand, we can now prove the upper bound in Theorem 2.21 by induction.

Proof of Theorem 2.21. By induction it suffices to prove that


𝑇1
1/2 𝑓





𝑞
≤



𝑇1
𝑟𝑖
𝑓



𝑞
.

Let 𝑥 = (𝑥1 , 𝑥′). We fix 𝑥′ and consider the restriction of the last 𝑛 − 1 coordinates to 𝑥′. The key property
here is that the coordinate-wise noise operator commutes with restriction to that coordinate so we can
just apply Claim 2.23. More precisely, we can write


𝑇 𝑖1/2 𝑓 (𝑥)


𝑞 = 






(𝑇 𝑖1/2 𝑓 )��𝑥′(𝑥1)


𝑞,𝑥1






𝑞,𝑥′

=






𝑇1/2 𝑓 ��𝑥′(𝑥1)

𝑞,𝑥1


𝑞,𝑥′
≤






𝑇𝑟1 𝑓 ��𝑥′(𝑥1)

𝑞,𝑥1


𝑞,𝑥′
=



𝑇 𝑖𝑟𝑖 𝑓 (𝑥)

𝑞
as desired. □

With this preparation in place, we can prove the hypercontractivity inequality.

Proof of Theorem 2.16. Let 𝑔 = (𝑇2 𝑓 )≤𝑟 . By Jensen’s inequality, we have

E
𝑥

[ (
𝑓 ≤𝑟

)4] ≤ E
𝑥

[
E
𝑟

[
𝑔̃
��
𝑥
(𝑟)4

] ]
.

Now, by applying the usual hypercontractive inequality (Lemma 2.10) over the Boolean hypercube to 𝑔,
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and using the fact that 𝑔=𝑆(𝑥) are the Fourier coefficients of the Boolean function 𝑔̃(𝑥, ·), it follows that

E
𝑥

[
E
𝑟

[
𝑔̃
��
𝑥
(𝑟)4

] ]
≤ 2𝑂(𝑟) E

𝑥

[
E
𝑟
[𝑔̃(𝑥, 𝑟)2]2

]
= 2𝑂(𝑟) E

𝑥

©­«
∑
|𝑆 |≤𝑖

𝑔=𝑆(𝑥)2ª®¬
2 .

That is, we have

E
𝑥

[ (
𝑓 ≤𝑟

)4] ≤ 2𝑂(𝑟) E
𝑥

©­«
∑
|𝑆 |≤𝑟

22|𝑆 | 𝑓 =𝑆(𝑥)ª®¬
2

≤ 2𝑂(𝑟) E
𝑥

©­«
∑
|𝑆 |≤𝑟

𝑓 =𝑆(𝑥)2ª®¬
2 .

Next, we split up this term and apply the Cauchy-Schwarz inequality:

E
𝑥

©­«
∑
|𝑆 |≤𝑟

𝑓 =𝑆(𝑥)2ª®¬
2 = E

𝑥


∑
|𝐼 |≤𝑟

∑
𝑆⊃𝐼
|𝑆 |≤𝑟

𝑓 =𝑆(𝑥)2 ©­«
∑

𝑇:|𝑇 |≤𝑟,𝑆∩𝑇=𝐼
𝑓 =𝑇(𝑥)2ª®¬


≤

∑
|𝐼 |≤𝑟
E
𝑥𝐼

©­«
∑

𝑆⊃𝐼:|𝑆 |≤𝑟
E
𝑥𝑆\𝐼

[ 𝑓 =𝑆(𝑥𝑆)2]ª®¬ ©­«
∑

𝑇⊃𝐼:|𝑇 |≤𝑖
E
𝑥𝑇\𝐼

[ 𝑓 =𝑇(𝑥𝑇)2]ª®¬


=
©­«
∑
|𝐼 |≤𝑟

∑
𝑆⊃𝐼:|𝑆 ≤𝑟

E
𝑥𝑆

[
𝑓 =𝑆(𝑥𝑆)2

]ª®¬ max
|𝐼 |≤𝑟

𝑦𝐼∈{±1}𝐼

©­«
∑

𝑇⊃𝐼:|𝑇 |≤𝑟
E
𝑥𝑇\𝐼

[ 𝑓 =𝑇(𝑦𝐼 , 𝑥𝑇\𝐼)2]
ª®¬

≤ 2𝑟


 𝑓 ≤𝑟

2

2
max

|𝐼 |≤𝑟,𝑦𝐼∈{±1}𝐼
©­«

∑
𝑇⊃𝐼:|𝑇 |≤𝑟

E
𝑥𝑇\𝐼

[
𝑓 =𝑇(𝑦𝐼 , 𝑥𝑇\𝐼)2

]ª®¬
where for the last inequality we note that each 𝑓 =𝑆(·) term in the first summation appears exactly 2|𝑆 | ≤ 2𝑟

times. For the other term, we can do a principle of inclusion-exclusion type counting to relate it to
restrictions: ∑

𝑇⊃𝐼:|𝑇 |≤𝑟
E
𝑥𝑇\𝐼

[ 𝑓 =𝑇(𝑦𝐼 , 𝑥𝑇\𝐼)2] ≤
∑
𝑇⊃𝐼
E
𝑥𝑇\𝐼

[ 𝑓 =𝑇(𝑦𝐼 , 𝑥𝑇\𝐼)2]

=
∑
𝑇⊃𝐼
E
𝑥𝑇\𝐼


(∑
𝐽⊂𝐼

(−1)|𝐼 |−|𝐽 |( 𝑓𝐽→𝑦𝐽 )=𝑇\𝐼(𝑥𝑇\𝐼)
)2

≤ 2𝑟
∑
𝑇⊃𝐼

∑
𝐽⊂𝐼
E
𝑥𝐼\𝐽

[ (
𝑓𝐽→𝑦𝐽

)=𝑇\𝐼 (𝑥𝑇\𝐼)2]
= 2𝑟 max

𝐽⊂𝐼



 𝑓𝐽→𝑦𝐽



2
2
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where we applied the Cauchy-Schwarz inequality to obtain the final inequality. Putting everything
together gives us the desired conclusion. □

Finally, we deduce Theorem 2.4 from Theorem 2.16. This part of the argument is quite similar to the
argument in Theorem 2.9, where we used the Hölder inequality trick in Lemma 2.12. We first package
this part of the argument into the following useful corollary.

Corollary 2.24. Let 𝑓 ∈ 𝐿2({±1}𝑛 , 𝜇⊗𝑛
𝑝 ) be a monotonic function and 𝑟 ≤ 𝑛. Suppose 𝜇𝑝( 𝑓𝐽→1) ≤ 𝜇𝑝( 𝑓 ) + 𝛿

for all |𝐽 | ≤ 𝑟 and 𝜇𝑝( 𝑓 ) < 𝛿. Then
E[

(
𝑓 ≤𝑟

)2] ≤ 𝐶𝑟𝛿1/3𝜇𝑝( 𝑓 )

for some absolute constant 𝐶 > 0.

Proof. Let 𝑔𝑖 := 𝑓𝑖→1 − 𝑓𝑖→0, then for 𝑆′ ⊂ [𝑛] with |𝑆′ | ≤ 𝑟 − 1, we have

𝜇𝑝((𝑔𝑖)𝑆′→1) = 𝜇𝑝
(
𝑓𝑆′∪{𝑖}→1 − 𝑓𝑠→1,{𝑖}→0

)
≤ 𝜇𝑝( 𝑓 ) + 𝛿 − 𝜇𝑝( 𝑓𝑖→0)
≤ 𝜇𝑝( 𝑓𝑖→1) + 𝛿 − 𝜇𝑝( 𝑓𝑖→0)
= 𝜇𝑝(𝑔𝑖) + 𝛿,

where we used in both inequality the monotonicity of 𝑓 . Now, by Theorem 2.16, it follows that for some
𝐶 > 1, we have 

𝑔≤𝑟



4
≤ 𝐶𝑟



𝑔≤𝑟

1
2
2

(
∥𝑔∥22 + 𝛿

)1/2
. (2)

Combining (2) with Lemma 2.12 (which we can apply in this 𝑝-biased setting because of Remark 2.13, it
follows that 

𝑔≤𝑟

2

2
≤



𝑔≤𝑟


4
∥𝑔∥3/22

≤ 𝐶𝑟


𝑔≤𝑟

1/2

2
∥𝑔∥3/22

(
∥𝑔∥22 + 𝛿

)1/2
which rearranges to



𝑔≤𝑟


2
≤ 𝐶𝑟 ∥𝑔∥2 𝛿1/3. □

Proof of Theorem 2.4. Let 𝛽 be such that 𝐶2𝐾 exp(−𝛽𝐾)1/3 = 1
2 for the value of the constant 𝐶 from Corol-

lary 2.24. Suppose for the sake of contradiction that 𝜇𝑝( 𝑓𝐽→1) ≤ 𝜇𝑝( 𝑓 ) + exp(−𝛽𝐾) for all sets 𝐽 of size 2𝐾.
By Corollary 2.24, it follows that

E[( 𝑓 ≤2𝐾)2] ≤ 𝐶2𝐾 exp(−𝛽𝐾)1/3𝜇𝑝( 𝑓 ) =
𝜇𝑝( 𝑓 )
2

which implies that E[( 𝑓 ≥2𝐾)2] = ∥ 𝑓 ∥22 − E[( 𝑓 ≤2𝐾)2] ≥ 𝜇𝑝( 𝑓 )/2. But by definition of the 𝑝-biased influence
(see (1)), it follows that 𝑝(1− 𝑝)𝐼[ 𝑓 ] ≥ 2𝐾 E[( 𝑓 ≤2𝐾)2] and so 𝑝(1− 𝑝)𝐼[ 𝑓 ] > 𝐾𝜇𝑝( 𝑓 ) which gives the desired
contradiction. □
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2.1.3 Boosting Theorem 2.4 in the graph setting

Theorem 2.25 (Another variant of Friedgut’s sharp threshold theorem). Let 𝒜 be a monotone graph property
with a coarse threshold. Then for all positive 𝛼 and 𝐶, there exists 𝛿, 𝜀, 𝑝0 , 𝐾 > 0 such that if 0 < 𝑝 < 𝑝0 for some
𝛼 ≤ P𝑍∼𝐺(𝑛,𝑝)[𝑍 ∈ 𝒜] ≤ 1 − 𝛼 then there is a graph 𝑀 on 𝐾 vertices such that P𝑍∼𝐺(𝑛,𝑝)[𝑀 ∈ 𝑍] > 𝜀 and

P𝑍∼𝐺(𝑛,𝑝)[𝑍 ∪𝑀 ∈ 𝒜] > P𝑍∼𝐺(𝑛,𝑝)[𝑍 ∈ 𝒜] + 𝛿.

Proof. We begin by encoding the graph property 𝒜 as a Boolean function 𝑓 : {±1}(𝑛2) → {0, 1} the
natural way: we encode the edge set of the graph the obvious way and then set 𝑓 = 1𝒜 to be the
indicator function of the property. The main observation is that for a 𝑆 ⊂

([𝑛]
2

)
of size 𝐾, we have

| 𝑓̂ (𝑆)| ≤ (4𝑝(1 − 𝑝))|𝑆 |/2 and summing 𝑆 over its orbit Θ (of homomorphic images) it follows that since
P𝑍∼𝐺(𝑛,𝑝)[𝑆 ∈ 𝑍] = |Θ(𝑆)|𝑝 |𝑆 |(1 − 𝑝)(𝑛2)−|𝑆 |, we have∑

𝑆∈Θ
𝑓̂ (𝑆)2 ≤ 𝑂(P𝑍∼𝐺(𝑛,𝑝)[𝑆 ∈ 𝑍])

In other words, if P𝑍∼𝐺(𝑛,𝑝)[𝑆 ∈ 𝑍] is small, the orbit of the graph contributes very little to the 2-norm of
𝑓 . We can therefore proceed as before: first, we use the Russo-Margulis Theorem (Theorem 1.6) to obtain
𝐾 > 0 such that 𝑝𝐼[ 𝑓 ] ≤ 𝐾𝜇𝑝( 𝑓 )(1 − 𝜇𝑝( 𝑓 )). Let 𝛽 be such that 𝐶2𝐾 exp(−𝛽𝐾)1/3 = 1

2 for the value of the
constant 𝐶 from Corollary 2.24. Let

Suppose for the sake of contradiction that𝜇𝑝( 𝑓𝐽→1) ≤ 𝜇𝑝( 𝑓 )+exp(−𝛽𝐾) for all sets 𝐽 of size 2𝐾 such that
P𝑍∼𝐺(𝑛,𝑝)[𝑆 ∈ 𝑍] ≥ exp(−𝛽𝐾). Note that for all 𝐼 ⊂

([𝑛]
2

)
such that |𝐼 | ≤ 2𝑘 we have ∥ 𝑓𝐼→1∥22 ≤ exp(−𝛽𝐾)

and so the same proof of Corollary 2.24 continues to work. It therefore follows that

E
𝜇𝑝
[( 𝑓 ≤2𝐾)2] ≤ 𝐶2𝐾 exp(−𝛽𝐾)1/3𝜇𝑝( 𝑓 ) =

𝜇𝑝( 𝑓 )
2

which implies that E[( 𝑓 ≥2𝐾)2] = ∥ 𝑓 ∥22 − E[( 𝑓 ≤2𝐾)2] ≥ 𝜇𝑝( 𝑓 )/2.
But by definition of the 𝑝-biased influence, it follows that 𝑝(1 − 𝑝)𝐼[ 𝑓 ] ≥ 2𝐾 E[( 𝑓 ≤2𝐾)2] and so

𝑝(1 − 𝑝)𝐼[ 𝑓 ] > 𝐾𝜇𝑝( 𝑓 ) which gives the desired contradiction. □

It is immediate to deduce Theorem 2.1 from Theorem 2.25.

3 Baby example of sharp threshold: 2-colorability of hypergraphs

In this section, we demonstrate an application of Theorem 2.1 to prove the sharp threshold of 2-(vertex)-
coloring of 𝑘-uniform hypergraphs for 𝑘 > 2. This is an important lemma in results about the threshold
for 𝑘-sat problems [AM02], the latter being itself a fundamental question in probability. The reason
we study hypergraphs rather than graphs is that 2-colorability of graphs has a coarse threshold, since
2-colorability corresponds to being bipartite and is witnessed by the local property of absence of odd
cycles.

Theorem 3.1. Let 𝑘 > 2 be fixed and let 𝐻(𝑛, 𝑝) be the random 𝑘-uniform hypergraph on 𝑛 vertices. Then the
threshold for 𝐻(𝑛, 𝑝) being non-2-colorable is sharp.
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Suppose for the sake of contradiction that 2-colorability of 𝑘-uniform hypergraph is coarse. Then
the statement of the threshold theorem (Theorem 2.1) basically provides the existence of a constant size
“Magical” graph 𝑀 such that its existence boosts the probability of being non-2-colorability by a lot.
On first thought this may seem plausible; for instance the presence of the graph formed by all possible
𝑘-edges among (2𝑘 − 1) nodes (i.e. the complete 𝑘-uniform hypergraph ℋ𝑘 on (2𝑘 − 1) nodes) would
result in non-2-colorability.

The point is that the threshold probability is 𝑝 ≍ 𝑛−(𝑘−1) and at this 𝑝 it is very unlikely for 𝐻(𝑛, 𝑝)
to contain such ℋ𝑘 . Indeed, the expected number of such ℋ𝑘 in 𝐻(𝑛, 𝑝) is ≍ 𝑛(2𝑘−1)−(𝑘−1)(2𝑘−1𝑘−1 ) = 𝑜(1).
And therein lies what I find remarkable about Theorem 2.1: it is able to capture the fact that these kinds
of obstructions are in some sense “bogus” and only see the real obstructions in the form of the magical
graphs 𝑀.

Now, to prove Theorem 3.1, we begin by formalizing the above heuristic regarding obstructions.

Claim 3.2. If P[𝑀 ⊂ 𝐻(𝑛, 𝑝)] is bounded away from 0, then 𝑀 is 2-colorable.

Proof. By definition, for every subhypergraph 𝑀′ ⊂ 𝑀, the expected number of copies of 𝑀′ in 𝐻(𝑛, 𝑝)
is Ω(1). Since the threshold probability is ≍ 𝑛−(𝑘−1), we have that

E[# of 𝑀′ in 𝐻(𝑛, 𝑝)] = 𝑛 |𝑉(𝑀′)|−(𝑘−1)|𝐸(𝑀′)| .

That is, every set of 𝑟 edges in 𝑀 meets at least (𝑘 − 1)𝑟 vertices. By Hall’s marriange theorem, it follows
that we can find a mapping 𝑔 from 𝐸(𝐻) to 𝑟-tuples of distinct vertices such that for all 𝑣 ∈ 𝑉(𝐻) there
exists a unique edge 𝑒 with 𝑣 ∈ 𝑔(𝑒). Then the 2-coloring of 𝑀 can be formed by assigning each edge a
unique pair of vertices and then assigning them different colors. □

Next, we apply Theorem 2.1 to the (hyper)graph property 𝒜 of being non-2-colorable. We restrict to
the positive fraction of instances 𝑍 ∼ 𝐻(𝑛, 𝑝) for which the two properties in the theorem holds. Then
we know that for an 𝜀 fraction of possible 𝜑(𝑀), adding 𝑍 ∪ 𝜑(𝑀) is not 2-colorable.

However, Claim 3.2 shows that 𝑀 = {𝑣1 , . . . , 𝑣𝑡} is itself 2-colorable; fix such a coloring 𝜓 : [𝑡] → [2].
For some 𝑡-tuple of vertices 𝑢1 , . . . , 𝑢𝑡 , we say that {𝑢1 , . . . , 𝑢𝑡} is an obstruction to 𝑍 if the coloring 𝜓

specified by 𝜓(𝑢𝑖) = 𝜓(𝑖) cannot be extended to give a valid coloring of of 𝑍; that is, if there does not exist
some coloring 𝜑 : 𝑉(𝑍) → {0, 1} such that the restriction to {𝑢1 , . . . , 𝑢𝑡} agrees with 𝜓 i.e. 𝜑 |{𝑢1 ,...,𝑢𝑡 } = 𝜓.
Using this language, we can rephrase the observation in the previous paragraph as effectively saying that
an 𝜀 fraction of 𝑡-tuples {𝑢1 , . . . , 𝑢𝑡} ∈

(𝑉
𝑡

)
are obstructions to 𝑍.

We use a supersaturated version of the hypergraph Kővari-Sós-Turán theorem to extract a subset of
vertices which form many 𝑡-tuples of obstructions to 𝑍.

Theorem 3.3 ([ES83]). For every positive integers 𝑘 and 𝑡 and 0 < 𝛾 ≤ 1, there exists 0 < 𝛾′ such that for suffi-
ciently large 𝑛, if𝐻 is a 𝑡-regular hypergraph on vertex set [𝑛], then there exists 𝛾′𝑛𝑘𝑡 copies of the complete 𝑡-partite
graph with 𝑘 vertices in each part. (i.e. 𝛾′ fraction of sampling 𝑡 possible 𝑘-tuples (𝑣11 , . . . , 𝑣𝑘1), . . . , (𝑣1𝑡 , . . . , 𝑣𝑘𝑡 )
have the property that for any 𝑓 : [𝑡] → [𝑘] we have (𝑣 𝑓 (1)1 , . . . , 𝑣

𝑓 (𝑡)
𝑡 ) ∈ 𝐸(𝐻))

By applying Theorem 3.3, to our 𝜀
(𝑛
𝑡

)
𝑡-tuple obstructions to 𝑍, we can obtain complete 𝑡-partite

graphs 𝐺 where the edges in 𝐺 correspond to 𝑡-tuples of vertices that form obstructions to 𝑍.
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Claim 3.4. If we add 𝑡 hyperedges to 𝑍, such that the corresponding 𝑘-tuples form a 𝑡-partite graph of obstructions,
then the resulting hypergraph is non-2- colorable.

This would give the desired contradiction because combining Claim 3.4 with Theorem 3.3 implies
that for any random 𝑡 hyperedges, with probability 𝜀′ the resulting hypergraph is not 2-colorable.
Consequently, adding 𝜔(𝑛) hyperedges to 𝑍 would almost surely make it not 2-colorable, which would
then contradict the first condition of Theorem 2.1. We finish by proving Claim 3.4.

Proof of Claim 3.4. Let 𝑒1 , . . . 𝑒𝑡 be the 𝑡 hyperedges furnished by the claim, and suppose for the sake of
contradiction that there is a proper 2-coloring 𝜓 of 𝑍 ∪ {𝑒1 , . . . , 𝑒𝑡}. In other words, for each 𝑖 ∈ [𝑡] there
is some 𝑣𝑖 ∈ 𝑒𝑖 such that 𝜓(𝑒𝑖) = 𝜎(𝑖). But (𝑣1 , . . . , 𝑣𝑡) was assumed to be bad but it also agrees in color
with 𝜎, and so we should not have been able to extend it to get 𝜓 in the first place. □

To summarize, the proof proceeded in two steps:

• First, we extract a Magical graph 𝑀 alá Theorem 2.1 and then show that 𝑀 ∉ 𝒜 because P[𝑀 ∈
𝐺(𝑛, 𝑝)] is bounded away from zero.

• Next, we use this property of 𝑀 to find gadgets in the graph 𝑍 upon whose inclusion would
force 𝑍 to be in 𝒜, and then we show that these gadgets are well-dstributed so that 𝐺(𝑛, 𝜀𝑝)
almost surely would not be able to avoid them. This would then imply that almost surely we have
𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ∈ 𝒜, which would then contradict the first property in Theorem 2.1. This step is
typically the involved step.

For further illustrations of using Theorem 2.1 to prove that various properties have sharp thresholds,
we refer the reader to the excellent survey [Fri05] which covers this example of hypergraph 2-colorability
and more.

4 (Brief) Historical interlude

In the previous section, we discussed the sharp threshold of some vertex colorings. In the remainder
of this article, we will only be concerned with edge colorings and in particular Ramsey properties of the
following flavor:

Definition 4.1. Given graph 𝐺 and 𝐻 and an integer 𝑟 > 2, we write 𝐺 → (𝐻)𝑟 if every 𝑟-coloring of the
edges of 𝐺 contains a monochromatic copy of 𝐻.

The goal of this section is to briefly discuss the results in [FRRT06] which show that 𝐺(𝑛, 𝑝) → (𝐾3)2
has a sharp threshold. There is also a long history of sharp thresholds of Ramsey properties. For space
reasons we will omit this and direct interested readers to consult the introductions of [FRRT06, FKSS22].
First, we state the key result in [FRRT06].

Theorem 4.2 ([FRRT06]). There exist positive constants 𝑐0 and 𝑐1 and a function 𝑐(𝑛) satisfying 𝑐0 ≤ 𝑐(𝑛) ≤ 𝑐1

such that, for every positive 𝜀,

lim
𝑛→∞
P[𝐺(𝑛, 𝑝) → (𝐾3)2] =


1 if 𝑝 ≥ (1 + 𝜀)𝑐(𝑛) · 𝑛−

1
2 ,

0 if 𝑝 ≤ (1 − 𝜀)𝑐(𝑛) · 𝑛−
1
2 .
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Let 𝒜 denote the property of containing a monochromatic 𝐾3 in any two coloring of the edges. As
sketched in the previous section, we need to first show that the 𝑀 given by Theorem 2.1 does not lie in
𝒜; i.e. there is a two coloring of 𝑀 avoiding triangles. We do this in detail in the following section, so
we omit this deduction for now.

We will put aside 𝑀 for now, and discuss what kind of gadgets we would like to find so that upon
adding it to an instance 𝑍 ∈ 𝐺(𝑛, 𝑝) we would land in 𝒜. The most natural idea is to find a gadget of the
following form:

𝑢 𝑣

𝑥1

𝑤

𝑥2

𝑥3

where 𝑢𝑥1 , 𝑣𝑥1 , 𝑣𝑥2 , 𝑤𝑥3 , 𝑤𝑥2 , 𝑢𝑥2 ∈ 𝑍. This would then force 𝑢𝑣𝑤 to be a monochromatic blue triangle.
The issue is that we would not expect our graph 𝑍 to be dense enough to contain many gadgets of the
above form, and so in particular it is highly likely that 𝐺(𝑛, 𝜀𝑝) would just avoid all of these gadgets
entirely.

At a high level, this is where the existence of 𝑀 comes into play. The fact that P[𝑍 ∪ 𝜑(𝑀)|𝑍] ≥ 𝜀

implies that there are many sets of vertices in 𝐺 such that planting a homomorphic copy of 𝑀 on them
“destroys” all triangle-free colorings (we call these sets of vertices bad), so the set of triangle-free colorings
of 𝑍 are very constrained. In some sense, we can use these bad sets to encode triangle-free colorings,
and in [FRRT06] a Szemérédi regularity style argument is utilized to reveal some underlying structure in
these bad sets. We will expand upon the idea of triangle-free colorings of 𝑍 being constrained and show
how to use the hypergraph containers method to cluster colorings together in the following section.

5 Sharp threshold for 𝐺(𝑛, 𝑝) → (𝐾3)3, following [FKSS22]

In this section, we provide an exposition of [FKSS22] in the specific instance of the three color Ramsey
problem for triangles, which in some sense is the “smallest” example that improves upon Section 4. The
most general statement that can be proven with the methods developed in [FKSS22] is the following:

Definition 5.1. A graph 𝐻 is collapsible if for every edge 𝑒 of 𝐻 and every endpoint 𝑎 of 𝑒, there is an edge
𝑓 of 𝐻 and a graph homomorphism (i.e. mapping of vertices that preserves edge relations) from 𝐻 \ 𝑓
to 𝐻 \ 𝑒 that maps both endpoints of 𝑓 to 𝑎.

Definition 5.2. The 2-density of a graph 𝐻 is defined to be

𝑚2(𝐻) := max

{
max
∅≠𝐹⊂𝐻

|𝐸(𝐹)| − 1

|𝑉(𝐹)| − 2
,
1

2

}
.

Definition 5.3. A graph 𝐻 is strictly 2-balanced if 𝑚2(𝐹) < 𝑚2(𝐻) for every subgraph 𝐹 ⊊ 𝐻.
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We refer the reader to the introduction of [FKSS22] for a discussion for why these definitions are in
some sense natural.

Theorem 5.4. [FKSS22, Theorem 1.2] Suppose that 𝐻 is a strictly 2-balanced, collapsible graph that is not a forest
and 𝑟 > 2 is an integer. There exist positive constants 𝑐0 and 𝑐1 and a function 𝑐(𝑛) satisfying 𝑐0 ≤ 𝑐(𝑛) ≤ 𝑐1

such that, for every positive 𝜀,

lim
𝑛→∞
P[𝐺(𝑛, 𝑝) → (𝐻)𝑟] =


1 if 𝑝 ≥ (1 + 𝜀)𝑐(𝑛) · 𝑛−1/𝑚2(𝐻) ,

0 if 𝑝 ≤ (1 − 𝜀)𝑐(𝑛) · 𝑛−1/𝑚2(𝐻).

At the end of this section, we outline how one might conceivably generalize what is presented in
this section to the general case. We leave the interested reader to consult [FKSS22] for the full proof.
Henceforth we restrict to the setting of 𝐻 = 𝐾3 and 𝑟 = 3.

The proof goes by way of contradiction using Friedgut’s sharp threshold theorem, as illustrated in
Section 3. For the reader’s convenience, we recall the variant of Friedgut’s sharp threshold theorem that
we will be using.

Theorem 5.5 (Variant of Friedgut’s sharp threshold Theorem). Let 𝒜 be a graph property with a coarse
threshold. Then there exists 𝑝 = 𝑝(𝑛), 𝜀 > 0 and a fixed graph 𝑀 with P[𝑀 ∈ 𝐺(𝑛, 𝑝)] > 𝜀 such that with
probability at least 𝜀 the following hold for 𝑍 ∼ 𝐺(𝑛, 𝑝):

P[𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ∈ 𝒜|𝑍] ≤ 1

2

(here the randomness is over 𝐺(𝑛, 𝜀𝑝)) and

P𝜑[𝑍 ∪ 𝜑(𝑀) ∈ 𝒜|𝑍] ≥ 𝜀,

(here the randomness is over 𝜑) where 𝜑(𝑀) is a uniformly random copy of 𝑀 in 𝐾𝑛 .

Let 𝑍 ∼ 𝐺(𝑛, 𝑝) be a typical instance of 𝐺(𝑛, 𝑝). If we want to prove the existence of a monochromatic
triangle in this 3-color Ramsey problem, we are motivated to consider the existence of the following
gadgets that serve as constraints on our edge colorings. Following [FKSS22], we call the configuration of
edges

𝑢 𝑣

𝑤 𝑥

a star supported on 𝑢𝑣 and we call

𝑢 𝑣

𝑤 𝑥

a rainbow star supported on 𝑢𝑣. We also say that 𝑢𝑣 is forced to a color, which in this example would
be green. The most natural way to show that a monochromatic triangle is “forced” is to try to find
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configurations of the following form obtained by “gluing together” three stars. We call the following
configuration of edges a constellation supported on 𝑢𝑣𝑤.

𝑢 𝑣

𝑥1

𝑦2

𝑤

𝑥2

𝑦1

𝑦3

𝑥3

And we call

𝑢 𝑣

𝑥1

𝑦2

𝑤

𝑥2

𝑦1

𝑦3

𝑥3

a rainbow constellation supported on 𝑢𝑣𝑤. In this example, if 𝑢𝑣𝑤 were also edges in 𝑍 then we would
obtain a contradiction as 𝑢𝑣𝑤 would be forced to a green triangle. The main conclusion from this
discussion is the following observation:

Observation. Let 𝑍 ∼ 𝐺(𝑛, 𝑝) and let 𝐶 be a given proper 3-coloring of 𝑍. Let 𝑢𝑣𝑤 be a
triangle forced to some color by 𝐶. Then 𝐶 cannot be extended to give a proper 3-coloring of
𝑍 ∪ {𝑢, 𝑣, 𝑤}.

First attempt. Suppose for the sake of contradiction that 𝐺(𝑛, 𝑝) → (𝐾3)3 has a coarse threshold. Let
𝑍 ∼ 𝐺(𝑛, 𝑝). Then by Theorem 5.5, it follows that there exists a Magical graph 𝑀 with property of
“boosting the probability of → (𝐾3)3”. In the following outline, we use the symbol (�) to denote key
observations or ideas.

Roughly speaking, we proceed in four steps:

1. We show that for every proper coloring of 𝑍, there will be many edges (precisely, Ω(𝑛2) edges)
forced to some color.

2. We show that since Ω(𝑛2) edges of 𝑍 are forced to some color, then actually Ω(𝑛3) triangles of 𝑍
are also forced to some color. This step is far from obvious, and we will discuss the subtleties in
this step in due course.

3. We show that it is very unlikely (with exponentially small probability) for𝐺(𝑛, 𝜀𝑝) to avoid all these
forced triangles from a given proper coloring of 𝑍.

4. We combine the probability estimate in the previous step with a union bound over all proper
colorings of 𝑍.
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Now, we elaborate on each of the above steps in more detail.

1. Suppose for the sake of contradiction that 𝑜(𝑛2) edges are forced to some color. Recall that by
Theorem 5.5, the Magical graph 𝑀 we obtain has 𝑂(1) edges. This implies

P𝜑[𝜑(𝑀) contains a forced edge] ≤ |𝐸(𝑀)| · 𝑜(1) = 𝑜(1).

Furthermore, we claim that

P𝜑[𝑍 ∩ 𝜑(𝑀) ≠ ∅ or ∃ triangle 𝑇 ⊂ 𝑍 ∪ 𝜑(𝑀) such that |𝐸(𝑇 ∩ 𝜑(𝑀))| = 2] = 𝑜(1). (3)

To prove this, it suffices to note that since 𝑀 has 𝑂(1) edges, we have

P𝜑[𝑍 ∩ 𝜑(𝑀) ≠ ∅] ≤ |𝐸(𝑀)| · 𝑝 = 𝑜(1).

Furthermore, if there is some triangle 𝑇 such that |𝐸(𝑇 ∩ 𝜑(𝑀))| = 2, then note that the final edge
of 𝑇 is specified by the two edges lying in the copy of 𝑀, that is:

P𝜑[∃ triangle 𝑇 ⊂ 𝑍 ∪ 𝜑(𝑀) such that |𝐸(𝑇 ∩ 𝜑(𝑀))| = 2] = 𝑝 = 𝑜(1).

Consequently, since (b) in Theorem 5.5 gives a positive proportion of 𝜑 providing a copy 𝜑(𝑀) of
𝑀 satisfying the “boosting” conditions, this implies that we can find a 𝜑(𝑀) such that:

(i) 𝑍 ∪ 𝜑(𝑀) → (𝐾3)3,
(ii) none of 𝑒 ∈ 𝜑(𝑀) is forced; that is, there exists a list of (at least) two possible colors for each

edge of 𝑀,

(iii) The only triangles in 𝑍 ∪ 𝜑(𝐵) are of the following form:

where the color indicates in where the edge lies: 𝑍 (black) and 𝜑(𝐵) (red).

Here comes the key claim (�):

Claim 5.6. If 𝑀 is a graph such that P[𝑀 ⊂ 𝐺(𝑛, 𝑝)] = Ω(1), then 𝑀 is 2-choosable in a way that avoids
monochromatic 𝐾3.

We can think of this as the analogue of Claim 3.2 in Section 3. To prove Claim 5.6, we first massage
the condition P[𝑀 ⊂ 𝐺(𝑛, 𝑝)] = Ω(1) into a more usable condition using the following well known
fact.

Definition 5.7. Define the edge-vertex ratio of a graph 𝐻 by 𝜌(𝐻) := |𝐸(𝐻)|
|𝑉(𝐻)| . Define the maximum

edge-vertex ratio of a subgraph of 𝐻 to be 𝑚(𝐻) := max𝐻′⊂𝐻 𝜌(𝐻′).

Proposition 5.8 ([Bol81]). For any graph 𝐻, 𝑝 = 𝑛−1/𝑚(𝐻) is the threshold for 𝐺(𝑛, 𝑝) containing 𝐻 as a
subgraph.
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Proof of Claim 5.6. First, since 𝑀 is a graph such that P[𝑀 ⊂ 𝐺(𝑛, 𝑝)] = Ω(1), it follows that 𝑚(𝑀) ≤
2 which in turn implies that either the minimum degree of 𝑀 is at most 3 or 𝑀 is 4-regular. We
endeavour to reduce to the case of 𝑀 = 𝐾5.

To that end, we first reduce to the case of 𝑀 being 4-regular. To that end we will show that we may
assume for every 𝑣 ∈ 𝑀 we have |𝐸(𝑁(𝑣))| ≥ 5. Suppose otherwise, so that ∃𝑣 ∈ 𝑉(𝑀) such that
|𝐸(𝑁(𝑣))| ≤ 4. Then that means we can find an orientation of the edges of 𝐺[𝑁(𝑣)] in which every
vertex has out-degree at most one. We claim that we can extend every monochromatic-𝐾3-free 3-
coloring of 𝑀 \ {𝑣} to 𝑀. Indeed, for every 𝑢 ∈ 𝑁(𝑣) assign 𝑢𝑣 a color that differs from the out-edge
from 𝑢. There are no monochromatic triangles in 𝑀 \ {𝑣} by assumption, and this coloring avoids
any monochromatic involving 𝑣 as this would involve an edge lying in 𝑁(𝑣). Consequently, this
allows us to successively “peel off” such vertices 𝑣 until we are left with a 4-regular graph.

Now, we show that if 𝑀 is 4-colorable then 𝑀 = 𝐾5. Suppose otherwise. If |𝐸(𝑁(𝑣))| > 5 for some
𝑣 ∈ 𝑉(𝑀) then 𝑀 = 𝐾5 since 𝑀 is a connected, 4-regular graph. That means we may assume that
|𝐸(𝑁(𝑣))| = 5 for all 𝑣 ∈ 𝑉(𝑀). Fix some vertex 𝑣 and write 𝑁(𝑣) = {𝑢1 , 𝑢2 , 𝑢3 , 𝑢4} and suppose
WLOG that 𝑢1𝑢3 ∉ 𝐸(𝑁(𝑣)). Then we must have 𝑁(𝑢1) = {𝑣, 𝑤, 𝑢2 , 𝑢4} for some 𝑤 ∈ 𝑉(𝑀).
However, 𝑤 is not adjacent to 𝑣, 𝑢2 , 𝑢4 since these vertices all have their four neighbors already
specified. However, this would then imply that |𝐸(𝑁(𝑢1))| ≤ 3 which is a contradiction as desired.

This last part is comparably the least interesting: it remains to show that 𝐾5 is 2-choosable in a way
that avoids a monochromatic 𝐾3. This part is a case-check; I could not do it in a more succinct way
than [FKSS22] so I will just reproduce verbatim their rather clean argument here:

If some colour, say red, contains a 5-cycle, then we may colour this 5-cycle red and the
complementary 5-cycle not red. If some colour class, say red, contains an edge, say 𝑒, not
in a triangle, then we may colour 𝐾5 \ 𝑒 without monochromatic triangles (this is possible
as 𝐾5 is minimally non-2-choosable) and colour 𝑒 red.
If none of the above is true, then each colour induces one of the following graphs:
𝐾3 , 𝐾4 , 𝐾

−
4 , 𝐾5 \ 𝐾3 or two triangles sharing a vertex. If some colour, say red, induces

𝐾5 \ 𝐾3, then we colour 𝐾2,3 with red, the remaining edge of 𝐾5 \ 𝐾3 with not red and
the edges of the 𝐾3 in the complement with two different colours other than red. If one
of the colours, say red, induces 𝐾4 or 𝐾−

4 , then colour a 𝐶4 with red and its diagonal with
a colour other than red. Each of the remaining, uncoloured four edges can close at most
one monochromatic triangle, as red is not available anywhere outside of the 𝐾4 we have
already coloured; thus we may colour them one-by-one. This leaves the case where every
colour class is either 𝐾3 or two triangles sharing a vertex. But this is impossible, since 3
does not divide 2|𝐸(𝑀)| = 20.

□

Combining Claim 5.6 and (ii) gives a proper coloring of 𝜑(𝑀) using the available colors. In
particular, by (iii) it follows that this coloring of 𝑍 ∪ 𝜑(𝑀) that extends the initial monochromatic
𝐾3-free 3-coloring of𝑍 that we started with does not introduce any monochromatic𝐾3-free triangles:
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by definition, there are no monochromatic triangles of the form

and Claim 5.6 ensures that there are no monochromatic triangles of the form

as desired. However, this implies that 𝑍 ∪ 𝜑(𝐵) ̸→ (𝐾3)3 which contradicts the second property of
Theorem 5.5. Therefore, there must be Ω(𝑛2) edges forced to some color.

2. One way to derive a contradiction is to use the fact that every proper coloring of 𝑍 forcing many
edges to the same color to show that we must therefore force a monochromatic triangle in 𝑍, which
would then give a contradiction as desired. However, such a guess is too naïve. Indeed, even though
we forced Ω(𝑛2) edges to some color, it is conceivable however that they form a triangle-free graph.

Remark 5.9. If we were instead trying to prove a sharp threshold for the Ramsey property of
𝐺(𝑛, 𝑝) → (𝐻)𝑟 where 𝐻 is a bipartite graph, then because of the Kővari-Sós-Turán theorem we
would be able to circumvent this additional subtlety. This is also why we chose to work with 𝐾3, it
illustrates some of the main difficulties of the problem.

This is where the gadgets that we precisely defined come into play. The key observation is that to
force a triangle, we might as well find a rainbow constellation and that we can basically think of
forcing edges as finding rainbow stars. A rainbow constellation is a 3-fold blow-up of a rainbow
star which implies:

Claim 5.10. If a partial (i.e. we may choose to not color some edges) {𝑅, 𝐵}-coloring of 𝐾𝑛 contains Ω(𝑛4)
many rainbow stars, then it must also contain Ω(𝑛9) many rainbow constellations.

We prove this in Subsection 5.2 (see Lemma 5.26). In Subsection 5.2, we also show how to “bootstrap”
(�):

{Claim 5.10}+{containers}+{second-moment} → {every partial proper 3-coloring of 𝑍 forces Ω(𝑛3) △}.

We defer a further discussion of the the above techniques of “containers” and “second-moment
[method]” to Subsection 5.2.

Lemma 5.11. Let 𝜀 > 0. Suppose 𝑍 ∼ 𝐺(𝑛, 𝑝) for some 𝑝 = Θ(𝑛−1/2). Then with probability > 1 − 𝜀,
for every partial coloring of 𝑍 with three colors, if Ω(𝑛2) edges of 𝑍 are forced then Ω(𝑛3) triangles of 𝑍 are
forced.

Remark 5.12. If the fact that we consider the stronger condition of partial colorings right now is
confusing, it will become clear soon; we state Lemma 5.11 in this strengthened form with foresight
towards an application of the hypergraph containers method that becomes apparent soon.
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3. Now we use the first property in Theorem 5.5. Since with positive probability, 𝑍∪𝐺(𝑛, 𝜀𝑝) ̸→ (𝐾3)3
we should bound the probability that 𝐺(𝑛, 𝜀𝑝) avoids the many forced triangles from the previous
step. To that end, we can apply Janson’s inequality which we recall here.

Theorem 5.13 (Janson’s inequality [Jan90]). Suppose Ω is a finite set and let 𝐵1 , . . . , 𝐵𝑘 be a sequence of
(not necessarily distinct) subsets of Ω, and let 𝑅 ∼ Ω𝑝 for some 𝑝 ∈ [0, 1]. For each 𝑖 ∈ [𝑘], let 𝑋𝑖 be the
indicator of the event 𝐴𝑖 that 𝐵𝑖 ⊂ 𝑅 and let 𝑋 :=

∑
𝑖 𝐴𝑖 . Then, for any 0 ≤ 𝑡 ≤ E[𝑋],

P[𝑋 ≤ E[𝑋] − 𝑡] ≤ exp

(
− 𝑡2

2
∑
𝑖∼𝑗 P[𝐴𝑖 ∩ 𝐴 𝑗]

)
.

Lemma 5.14. Let 𝑝 = Θ(𝑛−1/2) and let 𝒮 be a set of Ω(𝑛3) triangles in 𝐾𝑛 . Then

P[𝐺(𝑛, 𝜀𝑝) ∩ 𝒮 = ∅] ≤ exp
(
−𝑂(𝜀𝑛2𝑝)

)
.

Proof. Let 𝐺 ∼ 𝐺(𝑛, 𝜀𝑝) and let 𝑋 = |𝐺 ∩ 𝒮| so that E[𝑋] = Ω((𝜀𝑝)3𝑛3). Let 𝐴𝑖 be the indicator that
the 𝑖th triangle of 𝒮 lies in 𝐺. Then we can compute

∑
𝑖∼𝑗
P[𝐴𝑖 ∩ 𝐴 𝑗] =

3∑
𝑗=1

∑
𝑇1 ,𝑇2∈𝒮
|𝑇1∩𝑇2 |=𝑗

P𝐺∼𝐺(𝑛,𝜀𝑝)[𝑇1 ∪ 𝑇2 ⊂ 𝐺] = 𝑂
(
(𝜀𝑝)4𝑛2

)
.

Substituting into Theorem 5.13 gives the desired conclusion. □

4. The goal is to find a contradiction to the first property in Theorem 5.5. To that end, we can combine
Lemma 5.14 with a union bound over all colorings:

1

2

?
≤ P[𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ̸→ (𝐾3)3] ≤ # 3-colorings of 𝑍 · exp

(
−𝑂(𝜀𝑛2𝑝)

)
,

and # 3-colorings of 𝑍 ≤ 3|𝐸(𝑍)| which we typically expect to be on the order of 3𝑛2𝑝/2. However,
plugging this back we do not get a contradiction to the inequality marked with a ‘?’.

Second attempt. What went wrong? The issue is really that we were too brutal with our union bound
over all possible colorings in the final step. Instead we can get quite a lot of savings by restricting to
partial colorings (i.e. colorings of 𝑍 ∼ 𝐺(𝑛, 𝑝) that only assign colors to some subset of edges):

Theorem 5.15. Suppose 𝐺(𝑛, 𝑝) → (𝐾3)3 has a coarse threshold. Then there exists a constant 𝜀 > 0 and a
subsequence 𝑝 = Θ(𝑛−1/2) such that for 𝑍 ∼ 𝐺(𝑛, 𝑝) with probability at least 𝜀:

• The hypergraph 𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ̸→ (𝐾3)3 with probability at least 1
2 .

• There exists a family 𝒞 of partial colorings of 𝑍 with three colors such that:

(i) |𝒞| = exp(𝑜(𝑛2𝑝)),

(ii) every proper coloring of 𝑍 extends some 𝐶 ∈ 𝒞,
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(iii) every 𝐶 ∈ 𝒞 forces Ω(𝑛2) edges to some color.

This is incidentally what we were referring to in Remark 5.12. By combining the fact that Lemma 5.11
continues to work for partial colorings with the family 𝒞 of partial colorings in Theorem 5.15 as well as
the application of Janson’s inequality in Lemma 5.14, we obtain the following improved union bound:

1

2
≤ P[𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ̸→ (𝐾3)3] ≤ |𝒞| · exp

(
−𝑂(𝑛2𝑝)

)
= 𝑜(1)

which furnishes the desired contradiction as desired.

Roadmap. The above proof outline is basically complete barring two important steps: the proof of the
partial coloring container Theorem 5.15 as well as the proof of the fact that we can force many triangles
(Lemma 5.11) in Step 2. In the following, we establish both of these. We will first prove Theorem 5.15 in
Subsection 5.1 because we think it is an illustrative example of the philosophy of using the hypergraph
container method to “beat the union bound”. It is apriori not clear how this philosophy is applicable to
prove Lemma 5.11 and we aim to motivate the application of hypergraph containers in Subsection 5.2.

5.1 Containers for Coloring

Recall that the key point of this step is to show that we do not need to take a union bound over all
colorings. To do so we show we show that colorings which “force” Ω(𝑛2) many edges are actually
“well-clustered”. We recall the specific statement that we aim to prove.

Theorem 5.16. Suppose 𝐺(𝑛, 𝑝) → (𝐾3)3 has a coarse threshold. Then there exists a constant 𝜀 > 0 and a
subsequence 𝑝 = Θ(𝑛−1/2) such that for 𝑍 ∼ 𝐺(𝑛, 𝑝) with probability at least 𝜀:

• The hypergraph 𝑍 ∪ 𝐺(𝑛, 𝜀𝑝) ̸→ (𝐾3)3 with probability at least 1
2 .

• There exists a family 𝒞 of partial colorings of 𝑍 with three colors such that:

(i) |𝒞| = exp(𝑜(𝑛2𝑝)),
(ii) every proper coloring of 𝑍 extends some 𝐶 ∈ 𝒞,

(iii) every 𝐶 ∈ 𝒞 forces Ω(𝑛2) edges to some color.

To that end, we will appeal to the hypergraph containers method developed by [ST15, BMS15] which
at a high level shows that independent sets in ‘natural’ hypergraphs are ‘clustered’.

Definition 5.17. For a hypergraph ℋ , we defined Δ𝑡(ℋ) to be the maximum degree of a 𝑡-element set of
vertices. Precisely, we define

Δ𝑡(ℋ) := max{degℋ (𝑇) : 𝑇 ⊂ 𝑉(ℋ) and |𝑇 | = 𝑡}

Theorem 5.18 (Hypergraph containers). [FKSS22, Theorem 4.7] For every positive integer 𝑘 and all positive
reals 𝜀 and 𝐾, there exist an integer 𝑡 and a positive real 𝛿 such the following holds. Suppose that a nonempty
𝑘-uniform (multi)hypergraph 𝒢 with vertex set𝑉 and a positive real 𝜏 satisfyΔℓ (𝒢) ≤ 𝐾𝜏ℓ−1 𝑒(𝒢)

𝑣(𝒢) for every ℓ ∈ [𝑘].
Then there exists a function 𝑓 : 𝒫(𝑉)𝑡 → 𝒫(𝑉) with the following properties:
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(i) For every 𝐼 ⊂ 𝑉 satisfying 𝑒(𝒢(𝐼)) ≤ 𝛿𝜏𝑘𝑒(𝒢), there are 𝑆1 , . . . , 𝑆𝑇 ⊂ 𝐼 with at most 𝜏𝑣(𝒢) elements each
such that 𝐼 ⊂ 𝑓 (𝑆1 , 𝑆2 , . . . , 𝑆𝑡).

(ii) For every 𝑆1 , . . . , 𝑆𝑡 ⊂ 𝑉 , the set 𝑓 (𝑆1 , . . . , 𝑆𝑡) induces fewer than 𝜀𝑒(𝒢) edges in 𝒢.

For a proof of this formulation of the container theorem, we refer the interested reader to [FKSS22,
Appendix B]. We also refer the interested reader to the wonderful survey [BMS18] for an account of the
many applications of hypergraph containers.

Roadmap. Let 𝑍 ∼ 𝐺(𝑛, 𝑝). For the rest of this section we first begin by constructing a hypergraph 𝒯
(where 𝑉(𝒯 ) = 𝐸(𝑍) × [3]) such that proper colorings of 𝑍 correspond to independent sets in 𝒯 . Next,
we need to show that 𝒯 is a “natural” hypergraph to invoke Theorem 5.18. Specifically, we check that 𝒯
satisfies the condition on degree sequences in Theorem 5.18.

Let 𝑍 ∼ 𝐺(𝑛, 𝑝). In order to construct 𝒯 , we show how to encode proper colorings via the
“boosting” subgraph 𝑀. More precisely, by Theorem 5.5 with probability at least 𝜀, we have P[𝑍 ∪
𝐺(𝑛, 𝜀𝑝) is 3-colorable] ≥ 1

2 while for at least 𝜀 proportion of 𝑀 ∈ 𝒵, we have that 𝑍 ∪ 𝑀 is not 3-
colorable. We henceforth restrict to these 𝜀 fraction of instances 𝑍 and suppose that the fixed graph 𝑀

have 𝐾 edges.
Now, the key idea is to track colorings of 𝑍 such that taken in conjunction with some proper coloring

𝑀 does not create any monochromatic triangles in 𝑀 ∪ 𝑍. (One might object that 𝑀 ∩ 𝑍 could contain
some edges and this creates complications; this is however an unlikely event per a similar calculation as
that in (3).) Precisely, let ℳ be the collection of all the automorphic copies of 𝑀 in 𝐾𝑛 and let

ℳ𝑍 := {𝑀 ∈ ℳ : 𝑍 ∪𝑀 not 3-colorable}.

Definition 5.19. Let 𝑍 ∼ 𝐺(𝑛, 𝑝) and let 𝐵 ⊂ 𝐾𝑛 be such that 𝐵 ∩ 𝑍 = ∅. A coloring 𝜑 : 𝑍 → [3] is
consistent with a coloring 𝜓 of 𝐵 if 𝜑 ∪ 𝜓 does not create any monochromatic triangles.

Definition 5.20. Let 𝑍 ∼ 𝐺(𝑛, 𝑝). A coloring 𝜑 : 𝑍 → [3] is enlargeable if there exists 𝑀 ∈ ℳ𝑍 such that
𝑀 ∩ 𝑍 = ∅ and a coloring 𝜓 : 𝑀 → [3] such that 𝜑 is consistent with 𝜓.

Since enlargeable colorings of 𝑍 must necessarily not be proper colorings, it suffices to construct a
hypergraph 𝒯 with𝑉(𝒯 ) = 𝐸(𝑍) × [3] such that hyperedges of 𝒯 encode these enlargeable colorings. In
other words, we construct a hypergraph 𝒯 such that

𝐸(𝒯 ) ↔ {enlargeable colorings of 𝑍} ↔ {improper colorings of 𝑍}.

First, we show that a positive fraction of 𝑍 has the property that all 𝑀 ∈ ℳ𝑍 is well-behaved. Because of
our desire to track stars, it is natural to consider the following quantity:

𝐼(𝑀, 𝑍) := {𝑆 \𝑀 : 𝑆 ∈ 𝒮 is such that 𝑆 ∩𝑀, 𝑆 ∩ 𝑍 ≠ ∅}

where 𝒮 denotes the triangles in 𝐾𝑛 .
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Claim 5.21. Fix 𝜀 > 0. For 𝑍 ∼ 𝐺(𝑛, 𝑝) (for the parameters as defined earlier), the expected number of 𝑀 ∈ ℳ𝑍

that do not satisfy the following properties is at most 0.1𝜀2 |ℳ𝑍 |:

(1) The edge sets of 𝑍 and 𝑀 are disjoint,

(2) Every nonempty set in 𝐼(𝑀, 𝑍) has 2 elements,

(3) The sets in 𝐼(𝑀, 𝑍) are pairwise disjoint,

(4) The family 𝐼(𝑀, 𝑍) contains at most 𝐿 sets.

where 𝐿 is chosen such that 𝐾𝐿/𝐿! ≤ 0.1𝜀2.

We defer the proof of Claim 5.21 to the end of the section. None of these conditions should be
surprising; a triangle is specified by two edges, and since 𝑍 is sparse we would expect there to be very
few triangles that contain two edges of 𝑀 and one edge of 𝑍. Similarly, since 𝑍 is sparse and 𝑀 has 𝑂(1)
size, we would expect there to be very few “hitting set” triangles that intersect 𝑍 and some 𝑀 ∈ ℳ𝑍.
For the purpose of constructing our containers for the coloring via the hypergraph 𝒯 , the last property
is relevant so that we can bound the size of the edges in 𝒯 . The earlier properties of 𝐼(𝑀, 𝑍) are useful
for checking that the codegree conditions of 𝒯 satisfies those in Theorem 5.18.

Let ℳ′
𝑍
⊂ ℳ𝑍 be those 𝑀 that satisfy the four properties listed in Claim 5.21. We say that 𝑍 ∈ 𝐺(𝑛, 𝑝)

is nice if |ℳ𝑍 | ≥ 𝜀/2 · |ℳ|. Then a consequence of Claim 5.21 is that since with probability 𝜀 we have
that |ℳ𝑍 | ≥ 𝜀|ℳ|, it follows that

P[𝑍 is nice] ≥ 𝜀 − P[|ℳ𝑍 | − |ℳ′
𝑍 | ≤ 𝜀/2|ℳ|] ≥ 𝜀 −

E[|ℳ𝑍 | − |ℳ′
𝑍
|]

𝜀/2 · |ℳ| ≥ 𝜀 − 4𝜆
𝜀

≥ 𝜀/2.

We henceforth restrict our attention to this positive density of nice 𝑍.

Definition 5.22. A given coloring 𝐶 of 𝑍 is enlargeable if and only if there exists 𝑀 ∈ ℳ𝑍, a proper
3-coloring 𝜓 of 𝑀 and a 3-coloring 𝜑𝐶,𝜓 :

⋃
𝐼(𝑀, 𝑍) → [3] of all the elements in 𝐼(𝑀, 𝑍) that is consistent

with 𝜓 and furthermore 𝜑𝐶,𝜓 ⊂ 𝐶.

This motivates constructing the hypergraph 𝒯 with:

• 𝑉(𝒯 ) = 𝐸(𝑍) × [3], and

• 𝐸[𝒯 ] contains edges {(𝑒 , 𝜑𝐶,𝜓(𝑒)) : 𝑒 ∈ ⋃
𝐼(𝑀, 𝑍)} for all choices of 𝑀 ∈ ℳ and proper colorings

𝜓 of 𝑀 for which 𝜑𝐶,𝜓 is well-defined.

Apriori it is possible that 𝒯 has some very high degree sets (i.e. 𝑇 ∈
(𝑉
𝑡

)
such that deg𝒯 (𝑇) is large)

that makes 𝒯 not satisfy the codegree conditions of Theorem 5.18. To that end, we will first prune out
these high degree vertices to a subhypergraph 𝒯 ′ ⊂ 𝒯 that contains about as many edges as 𝒯 but with
more well-behaved codegree conditions.

Lemma 5.23. Let𝒯 be the hypergraph we defined earlier corresponding to some𝑍 ∼ 𝐺(𝑛, 𝑝). Then with probability
at least 𝜀, there exists a subhypergraph 𝒯 ′ ⊂ 𝒯 that has at least |𝐸(𝒯 )| − 𝜀/8 · |ℳ| edges that satisfies:

• Δ1(𝒯 ′) = 𝑂
(
𝜀−1 |ℳ|

𝑛3/2

)
, and
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• Δ2(𝒯 ′) = 𝑜
(
|ℳ|
𝑛3/2

)
.

We prove Lemma 5.23 at the end of the section. Next, we combine these pieces with Theorem 5.18 to
deduce Theorem 5.16.

Proof of Theorem 5.16. We restrict to 𝒯 ′ that satisfies Lemma 5.23 which occurs with probability at least
𝜀, and we may also assume that |𝐸(𝑍)| ≲ 𝑛2𝑝. This implies the following bound on the number of edges
in 𝒯 ′

|𝐸(𝒯 ′)| ≤ 3 · 𝑂(𝑛2𝑝) · Δ1(𝒯 ′) = 𝑂(𝜀−1 |ℳ|).

Note that every edge of 𝒯 ′ has cardinality at most 2max𝑀∈ℳ′
𝑍
|𝐼(𝑀, 𝑍)| ≤ 2𝐿 by Claim 5.21, and so we

can write 𝒯 ′ =
⊔2𝐿
𝑖=1 𝒯𝑖 where 𝒯𝑖 is the subhypergraph of 𝒯 ′ that comprises edges of 𝒯 ′ of cardinalities

𝑖. The whole point of this step is to split 𝒯 ′ into 𝑖-regular subhypergraphs to apply the hypergraph
container lemma for each subhypergraph, since Theorem 5.18 only applies to regular hypergraphs.

Define𝑈 := {𝑢 ∈ [2𝐿] : |𝐸(𝒯𝑢)| ≳ 𝜀/𝐿 · |ℳ|} and fix an arbitrary 𝑢 ∈ 𝑈 so that by Lemma 5.23, we have
Δ1(𝒯𝑢) ≤ Δ1(𝒯 ′) = 𝑂(𝐿/𝜀2 |𝐸(𝒯𝑢)|/|𝑉(𝒯𝑢)|) and Δ2(𝒯𝑢) ≤ Δ2(𝒯 ′) ≤ 𝑜(𝐿/𝜀 · |𝐸(𝒯𝑢)|/|𝑉(𝒯𝑢)|). Consequently,
by applying Theorem 5.18, we obtain 𝑡(𝜀, 𝐿) and a collection 𝒞𝑢 of at most(

𝑜(|𝐸(𝑍)|)∑
𝑖=0

(
𝑂(|𝐸(𝑍)|)

𝑖

)) 𝑡
≤ exp(𝑜(|𝐸(𝑍)|))

subsets of 𝐸(𝑍) × [3] such that:

• Every proper coloring 𝜓 : 𝑍 → [3] of 𝑍 is contained (where we view the coloring naturally as a
subset of 𝐸(𝑍) × [3]) in a member of 𝒞𝑢 .

• Every member of 𝒞𝑢 induces fewer that 𝑂(𝜀/𝐿|ℳ|) edges in 𝒯𝑢 .

To finish up, we aggregate the information from all the 𝒯𝑖 : let our final collection of partial colorings Ψ be
defined as all partial colorings 𝜓

��
𝐶

where 𝐶 is a set of the form 𝐶 =
⋂
𝑢∈𝑈 𝐶𝑢 (i.e. we restrict to consider

colorings 𝜓 of 𝑍 in the 𝒞𝑢 that assign the same color to edges in 𝐶).
It remains to check that Ψ has all the claimed properties in the statement of the theorem. To that end,

we note that:

• For each 𝑢 ∈ 𝑈 , every proper coloring 𝜓 of 𝑍 is contained in some 𝐶𝑢 ∈ 𝒞𝑢 , and so the proper
coloring 𝜓 extends 𝜓𝐶 .

• We claim that every partial coloring 𝜓𝐶 ∈ Ψ forces at least Ω(𝑛2) edges to some color. Indeed, since
|𝐸(𝒯𝑢[𝐶])| ≤ |𝐸(𝒯𝑢[𝐶𝑢])| ≤ 𝑂(𝜀/𝐿·|ℳ|) if𝑢 ∈ 𝑈 and we also have |𝐸(𝒯𝑢[𝐶])| ≤ |𝐸(𝒯𝑢)| ≤ 𝑂(𝜀/𝐿·|ℳ|)
if 𝑢 ∉ 𝑈 . It follows that

|𝐸(𝒯 ′[𝐶]) =
2𝐿∑
𝑖=1

|𝐸(𝒯𝑢[𝐶])| ≤ 2𝐿 · 𝑂(𝜀/𝐿 · |ℳ|) = 𝑂(𝜀|ℳ|),

which in turns implies that

|𝐸(𝒯 [𝐶])| ≤ |𝐸(𝒯 ′[𝐶])| + |𝐸(𝒯 )| − |𝐸(𝒯 ′)| = 𝑂(𝜀|ℳ|). (4)
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However, to finish up we note that for any 𝐶 ⊂ 𝐸(𝑍) × [3], if we denote the number of edges forced
to a color by 𝐶 as 𝑓𝐶 , then

|𝐸(𝒯 [𝐶]) ≥ |ℳ′
𝑍 | − 𝑓𝐶 · 𝐾 |ℳ|

𝑛2

because every edge lies in at most 𝐾 |ℳ|
𝑛2

copies of 𝑀, and for every 𝑀 ∈ ℳ′
𝑍

that does not contain
any edges whose colors are forced by 𝐶, we can find an edge in 𝒯 [𝐶] corresponding to 𝑀: by
definition for any 𝑒 ∈ 𝐼(𝑀, 𝑍) we have that there are at least two possible choices of color for 𝑒 ∩𝑀.
Since 𝑀 is 2-choosable it follows that we can construct a proper coloring 𝜓 of 𝑀 that is consistent
with 𝑍, and this 𝜓 would then give rise to an edge {(𝑒 , 𝜑𝐶,𝜓(𝑒)) : 𝑒 ∈ 𝐼(𝑀, 𝑍)} in 𝒯 . That is,
our construction of 𝒯 ensures that for some coloring 𝐶 the edges of 𝒯 [𝐶] witnesses the proper
colorings of 𝑀 ∈ ℳ′

𝑍
that are consistent with 𝐶.

Combining this with (4) implies that 𝑓𝐶 ≥ Ω(𝜀/𝐾 · 𝑛2) since |ℳ′
𝑍
| ≥ (𝜀/2) · |ℬ|.

□

Deferred proofs.

Proof of Claim 5.21. Since for any fixed 𝑀 ∈ ℳ𝑍, we have that E[𝑍 ∩ 𝑀] = 𝑝 |𝑀 | = 𝑜(1), it follows from
Markov’s inequality that the fraction of ℳ𝑍 that does not satisfy (1) is 𝑜(1). Fix 𝑀 ∈ ℳ. Suppose a
nonempty set in 𝐼(𝑀, 𝑍) has only one element. Then it follows that there is a triangle that contains two
elements of 𝑀 which fixes the edge that lies in 𝑍, and therefore this occurs with probability 𝑝. The
maximum number of triangles that correspond to a singleton element in 𝐼(𝑀, 𝑍) is

( |𝑀 |
2

)
. Consequently,

on expectation the fraction of 𝑀 ∈ ℳ𝑍 that does not satisfy (2) is at most 𝑝
(𝐾
2

)
= 𝑜(1).

Remove all the elements from ℳ𝑍 that do not satisfy (1) and (2) to get ℳ′
𝑍

. The expected size of ℳ′
𝑍

satisfies E |ℳ′
𝑍
| = (1− 𝑜(1))|ℳ𝑍 |. Having ensured that (2) holds, it follows that for any fixed 𝑀 ∈ ℳ′

𝑍
the

expected number of pairs of 𝑆1 , 𝑆2 ∈ 𝐼(𝑀, 𝑍) satisfying 𝑆1 ∩ 𝑆2 ≠ ∅ is at most 𝑝3𝑛 = 𝑜(1). Consequently,
on expectation the fraction of 𝑀 ∈ ℳ𝑍 that does not satisfy (3) is also 𝑜(1).

Finally, let ℳ′′
𝑍

⊂ ℳ𝑍 consist of all the elements that satisfy (1), (2) and (3). We have E |ℳ′′
𝑍
| =

(1 − 𝑜(1))|ℳ𝑍 |. For 𝑀 ∈ ℳ′′
𝑍

and 𝑍 ∼ 𝐺(𝑛, 𝑝) let 𝑖(𝑀, 𝑍) be the largest integer ℓ such that there exists
triangles 𝑇1 , . . . , 𝑇ℓ :

• 𝑇1 , . . . , 𝑇ℓ ∈ 𝑀 ∪ 𝑍,

• |𝑇𝑖 ∩𝑀 | = 1 for all 1 ≤ 𝑖 ≤ ℓ ,

• 𝑇1 \𝑀, . . . , 𝑇ℓ \𝑀 are pairwise disjoint.

It suffices to prove that P[𝑖(𝐵, 𝑍) > 𝐿] ≤ 0.1𝜀2. To that end, it suffices to note that

P[𝑖(𝐵, 𝑍) > 𝐿] ≤ E[𝑖(𝐵, 𝑍)]
𝐿!

=
(|𝑀 | · 𝑛)𝐿𝑝2𝐿

𝐿!
≤ 0.1𝜀2

by the given assumption on 𝐿, as desired. □

30



Proof of Lemma 5.23. We begin by noting that

E
𝑍∼𝐺(𝑛,𝑝)


∑

𝑣∈𝑉(𝒯 )
deg𝒯 (𝑣)2

 ≤ 𝑂

(
|ℳ|2
𝑛3/2

)
(5)

where we note that colorings add constant factors so we can just consider the underlying graph, and so
for any 𝑒 ∈ 𝐸(𝐾𝑛) and 𝑖 ∈ [3], we have deg𝒯 (𝑒 , 𝑖) ≤ 𝑂(#{triangle 𝑇 ∋ 𝑒 : |(𝑇 \ {𝑒}) ∩ 𝑍 | = 1} · |ℳ|·𝐾

(𝑛2)
), and

E𝑒 #{triangle 𝑇 ∋ 𝑒 : |(𝑇 \ {𝑒}) ∩ 𝑍 | = 1}2 ≤ 𝑂(𝑝3𝑛2) = 𝑂(𝑛1/2).
Furthermore, we claim that

E
𝑍∼𝐺(𝑛,𝑝)


∑

𝑇∈(𝑉(𝒯 )
2 )

deg𝒯 (𝑇)2
 ≤ 𝑜

(
|ℳ|2
𝑛3/2

)
. (6)

To prove this, we define for distinct edges 𝑒1 , 𝑒2 ∈ 𝐸(𝐾𝑛) the quantity 𝛾2(𝑒1 , 𝑒2) that records the number
of triples of (𝑇1 , 𝑇2 , 𝑀) where 𝑇1 , 𝑇2 are triangles and 𝑀 ∈ ℳ such that:

• 𝑒1 ∈ 𝑇1, 𝑒2 ∈ 𝑇2,

• 𝑇1 ∩𝑀 = 𝑇2 ∩𝑀 and |𝑇1 ∩𝑀 | = 1,

• (𝑇1 ∪ 𝑇2) \ (𝑀 ∪ {𝑒1 , 𝑒2}) ⊂ 𝑍.

Pictorially, 𝛾2(𝑒1 , 𝑒2) basically counts objects (technically it encodes such objects in terms of the two
triangles and also 𝑀) that look like:

𝑓

𝑒1

𝑒3

𝑒2

𝑒4

where 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4 ∈ 𝑍 and 𝑓 ∈ 𝑀. It is not difficult to check that

E


∑

𝑇∈(𝑉(𝒯 )
2 )

deg𝒯 (𝑇)2
 ≤ 𝑂

(
E

[ ∑
𝑒1 ,𝑒2∈𝑍

𝛾2(𝑒1 , 𝑒2)2
])

= 𝑂

(
|ℳ|2𝐾2

(𝑛2)2
· 𝑝6𝑛4

)
= 𝑜

(
|ℳ|2
𝑛3/2

)
.

These suffice to establish the desired conclusion because by iteratively removing 𝜀/16· |ℳ| hyperedges
of 𝒯 that contain some vertex of 𝑉(𝒯 ) with largest degree and then iteratively removing 𝜀/16 · |ℳ|
hyperedges of 𝒯 that contain some

(𝑉(𝒯 )
2

)
with largest degree, we get 𝒯 ′ with at least |𝐸(𝒯 )| − 𝜀/8 · |ℳ|

hyperedges. By assumption of maximality, it is not difficult to check that: Δ1(𝒯 ′) ≤ 16
𝜀

∑
𝑣∈𝑉(𝒯 ) deg𝒯 (𝑣)2

and Δ2(𝒯 ′) ≤ 16
𝜀

∑
𝑇∈(𝑉(𝒯 )

2 ) deg𝒯 (𝑇)
2 which implies the desired conclusion by combining (5), (6) and

Markov’s inequality. □

5.2 Stars =⇒ Constellations

Lemma 5.24. Let 𝜀 > 0. Suppose 𝑍 ∼ 𝐺(𝑛, 𝑝) for some 𝑝 = Θ(𝑛−1/2). For every 𝛽1 > 0 there exists 𝛽2 > 0 with
the following property: with probability > 1− 𝜀 and a partial coloring of 𝑍 with three colors, if 𝛽1𝑛2 edges of 𝑍 are
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forced then 𝛽2𝑛3 triangles of 𝑍 are forced.

Given the intimate relationships between forcing edges/triangles and rainbow stars/constellations,
we will instead prove the following.

Lemma 5.25. [Equivalent formulation of Lemma 5.25] Let 𝜀 > 0. Suppose 𝑍 ∼ 𝐺(𝑛, 𝑝) for some 𝑝 = Θ(𝑛−1/2).
For every 𝛽1 > 0 there exists 𝛽2 > 0 with the following property: with probability > 1− 𝜀, for every partial coloring
𝜓 of 𝑍 with three colors, if 𝜓 has 𝛽1𝑛2 rainbow stars then 𝐶 also has 𝛽2𝑛3 rainbow constellations.

To deduce Lemma 5.25 from Lemma 5.25 we need to show that in typical instances of 𝑍 ∼ 𝐺(𝑛, 𝑝) we
have that if there are Ω(𝑛3) rainbow constellations then they are typically supported by distinct triangles.
This follows by “ℓ2 control” via the Cauchy-Schwarz inequality.

Deducing Lemma 5.25 from Lemma 5.25. For a triangle 𝑇 and an instance 𝑍 ∼ 𝐺(𝑛, 𝑝), we write 𝐶(𝑇, 𝑍) for
the number of constellations in 𝑍 supported on 𝑇. Then because a constellation 𝜃 supported on 𝑇 has
the property that 𝑣 ∈ 𝜃 \ 𝑇 has degree 2, it follows that

E
𝑍∼𝐺(𝑛,𝑝)


∑

triangle 𝑇
𝐶(𝑇, 𝑍)2

 ≤ 𝑂(𝑛3).

An application of Markov’s inequality implies that with high probability (by enlarging constants neces-
sarily) we have that

∑
triangle 𝑇 𝐶(𝑇, 𝑍)2 ≤ 𝑂(𝑛3). Furthermore, by Lemma 5.25, with high probability if a

partial coloring 𝐶 of 𝑍 with three colors has Ω(𝑛2) forced edges of 𝑍 (that is, it has Ω(𝑛2) rainbow stars)
it follows that 𝐶 has Ω(𝑛3) rainbow constellations and let 𝒯 be the collection of triangles that supports
at least one of these rainbow constellations. By the Cauchy-Schwarz inequality, it follows that

Ω(𝑛6) =
(∑
𝑇∈𝒯

𝐶(𝑇, 𝑍)
)2

≤ |𝒯 | ·
(∑
𝑇∈𝒯

𝐶(𝑇, 𝑍)2
)
≤ |𝒯 | · ©­«

∑
triangles 𝑇

𝐶(𝑇, 𝑍)2ª®¬ = |𝒯 | · 𝑂(𝑛3),

which rearranges to give the desired bound on |𝒯 |. □

We first claim that this desired relationship between stars and constellations holds for 𝐸(𝐾𝑛) × [3]
(identified with 3-colored 𝐾𝑛 in the obvious way). We abuse notation in what follows, and we talk about
rainbow stars in 𝐸(𝐾𝑛) × [3] we mean the natural identification in the first component with the edges,
and the corresponding color of each edge in the second component.

Lemma 5.26. Any 3-coloring of 𝐾𝑛 that contains Ω(𝑛4) rainbow stars also contains Ω(𝑛9) rainbow constellations.

This lemma basically states that if we have in some sense close to the maximal possible density of
rainbow stars then we should also have close to the maximal possible density of rainbow constellations.
We can thereby think of Lemma 5.25 as a suitably sparsified version of Lemma 5.26: indeed the “expected
maximal number of rainbow stars” is ∼ 𝑝4𝑛4 = Θ(𝑛2) and the “expected maximal number of rainbow
constellations” is ∼ 𝑝6𝑛9 = 𝑛3.

The key observation for Lemma 5.25 is that a rainbow constellation is a 3-fold blow-up of a rainbow
star. To gain some intuition for the counts, we introduce the following notation for the homomorphism
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density of a 3-colored graph 𝐹 in a host 3-colored graph 𝐺:

hom(𝐹, 𝐺) :=
#{homomorphisms from 𝐹 to 𝐺}

|𝑉(𝐺)| |𝑉(𝐹)|

where a (colored) homormorphism 𝜑 : 𝑉(𝐹) → 𝑉(𝐺) where 𝐹 and 𝐺 are the projection to the first
coordinate (i.e. underlying graph) of 3-colored 𝐹 ⊂ 𝐸(𝐾𝑛) × [3] to 3-colored 𝐺 ⊂ 𝐸(𝐾𝑛) × [3] such that
if 𝑢𝑣 ∈ 𝐸(𝐹) then 𝜑(𝑢)𝜑(𝑣) ∈ 𝐸(𝐺) and furthermore the color of 𝑢𝑣 and color of 𝜑(𝑢)𝜑(𝑣) are the same.
Another interpretation of hom(𝐹, 𝐺) is that it is the probability that a random map 𝜑 : 𝑉(𝐹) → 𝑉(𝐺)
is a valid colored homomorphism. Since a rainbow constellation is a 3-fold blow-up of a rainbow-
constellation, it is reasonable to expect that if for some 𝐺 ⊂ 𝐸(𝐾𝑛) × [3] the probability 𝑝1 that a random
map 𝜑1 : 𝑉(star) → 𝑉(𝐺) is a valid colored homomorphism satisfies 𝑝1 = Ω(1) then we would expect
that the probability 𝑝2 that a random map 𝜑2 : 𝑉(constellation) → 𝑉(𝐺) satsifies 𝑝2 ≥ 𝑝31 = Ω(1).
Now unwinding the definitions shows that 𝑝1 = Ω(1) ⇔ ∃ Ω(𝑛3) rainbow stars in 𝐺 and 𝑝2 = Ω(1) ⇔
∃ Ω(𝑛9) rainbow constellations in 𝐺.

Consequently, in order to prove Lemma 5.25 the main idea would be somehow to transfer this
relationship between stars and constellations from 𝐾𝑛 to the sub-sampled/percolated 𝐺(𝑛, 𝑝). To that
end, we build the following hypergraphs of stars and constellations; both hypergraphs live on the vertex
set 𝐸(𝐾𝑛) × [3]:

• The edges of 4-uniform ℛ𝑠 encodes all the rainbow stars, so that |𝐸(ℛ𝑠)| = Ω(𝑛4). More concretely,
suppose red ↔ 1, blue ↔ 2, green ↔ 3 then

𝑢 𝑣

𝑤 𝑥

corresponds to the edge {(𝑢𝑤, 1), (𝑣𝑤, 1), (𝑢𝑥, 2), (𝑥𝑣, 2)} in ℛ𝑠 .

• The edges of the 12-uniform ℛ𝑐 encodes all the rainbow constellations so that |𝐸(ℛ𝑐)| = Ω(𝑛9).

In this language, an equivalent formulation of Lemma 5.26 is the following:

Lemma 5.27. For every 𝐶 ⊂ 𝐸(𝐾𝑛) × [3] and every 𝛽1 > 0, there exists 𝛽2 such that we have that if |𝐸(𝑅1[𝐶])| ≥
𝛽1𝑛4 then |𝐸(𝑅2[𝐶])| ≥ 𝛽2𝑛9.

Recall that the goal is to show that with high probability, every coloring of 𝑍 ∼ 𝐺(𝑛, 𝑝) with small
number of rainbow constellations also have a small number of rainbow stars. In the proof outline, we
mentioned that one way to do so is to combine hypergraph containers, the second moment method and
Lemma 5.27. It is perhaps now more clear why hypergraph containers will come in useful: it allows us
to have some savings on the union bounding over all colorings of 𝑍.

Now, we employ the hypergraph containers method on the hypergraph ℛ𝑐 to “cluster” colorings that
have few rainbow constellations. Because a constellation 𝜃 supported on triangle 𝑇 has the property that
𝑣 ∈ 𝜃 \ 𝑇 has degree 2, the codegree conditions of Theorem 5.18 are satisfied with 𝜏 = 𝑜(𝑝). Let 𝛾2 be
a sufficiently small constant to be determined. By Theorem 5.18, there exists constant 𝑡(𝛾2), 𝛾1(𝛾2) and
𝑓 : 𝒫(𝐸(𝐾𝑛) × [3])𝑡 → 𝐸(𝐾𝑛) × [3] such that:
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(†) For every partial 3-colouring 𝜓 of 𝐾𝑛 with fewer than Ω(𝑛3) rainbow constellations, there are
𝑆1 , . . . , 𝑆𝑡 ⊂ 𝐸(𝐾𝑛) × [3] consisting of at most 𝑜(𝑛3/2) edges each such that 𝜓 ⊂ 𝑓 (𝑆1 , . . . , 𝑆𝑡).

(‡) For every 𝑆1 , . . . , 𝑆𝑡 ⊂ 𝐸(𝐾𝑛) × [3], the set 𝑓 (𝑆1 , . . . , 𝑆𝑡) induces ≲ 𝛾2𝑛9 edges in ℛ𝑐 , and so by
Lemma 5.27 𝑓 (𝑆1 , . . . , 𝑆𝑡) also induces ≲ 𝛾1𝑛4 edges in ℛ𝑠 .

Let 𝑍 ∼ 𝐺(𝑛, 𝑝) with 𝑝 = Θ(𝑛−1/2). Basically, to prove Lemma 5.25, we suppose for the sake
of contradiction that we have a partial coloring 𝜓 of 𝑍 with 𝛽1𝑛 rainbow stars but less than 𝛽2𝑛3

rainbow constellations. Then we apply the hypergraph container as above to obtain 𝑆1 , . . . , 𝑆𝑡 such that
𝜓 ⊂ 𝑓 (𝑆1 , . . . , 𝑆𝑡). In particular, we can arrange for at most exp(𝑜(𝑛3/2)) containers for each of these
partial colorings 𝜓. Since each of these contains induces ≲ 𝛾1𝑛3 edges in ℛ𝑠 , we would guess that by
taking 𝛾2 sufficiently small so that 𝛾1 is sufficiently small and in particular so that 𝛾1 < 𝛽1, then with
high probability since 𝑓 (𝑆1 , . . . , 𝑆𝑡) has ≲ 𝛾1𝑛4 rainbow triangles, then 𝜓 ⊂ 𝑓 (𝑆1 , . . . , 𝑆𝑡) would have
≲ 𝛽1𝑝4𝑛4 = 𝛽1𝑛2 rainbow stars and that would give a contradiction.

However, generally speaking, bounding upper tails is hard, and in this case apriori we may not be
able to guarantee that the upper tails decay sufficiently fast (we need exponential decay). One of the nice
ideas in [FKSS22] is to use the second moment method to demonstrate that the number of stars in 𝑍 is
typically concentrated. That is, we would expect ℛ𝑠[𝐸(𝑍) × [3]] to be concentrated and therefore not too
large. In particular, if there are many rainbow stars in 𝜓 = (𝐸(𝑍) × [3]) ∩ 𝑓 (𝑆1 , . . . , 𝑆𝑡), then there are very
few rainbow stars in ℛ𝑠[𝐸(𝑍) × [3]] \ 𝑓 (𝑆1 , . . . , 𝑆𝑡).

Let 𝜋(·) be the projection to the first coordinate; that is, 𝜋 extracts the underlying (uncolored) graph
structure. Since 𝑓 (𝑆1 , . . . , 𝑆𝑡) induces ≲ 𝛾1𝑛4 edges in ℛ𝑠 , it follows that there are many rainbow stars
in ℛ𝑠[𝜋( 𝑓 (𝑆1 , . . . , 𝑆𝑡)) × [3]] \ 𝑓 (𝑆1 , . . . , 𝑆𝑡). In other words, we are reduced to the problem of bounding
the probability that ℛ𝑠[𝐸(𝑍) × [3]] \ 𝑓 (𝑆1 , . . . , 𝑆𝑡) avoids the many rainbow stars in ℛ𝑠[𝜋( 𝑓 (𝑆1 , . . . , 𝑆𝑡)) ×
[3]] \ ℛ𝑠[𝐸(𝑍) × [3]] \ 𝑓 (𝑆1 , . . . , 𝑆𝑡). This lower tail event is something that we can get an exponential tail
bound for by appealing to Janson’s inequality (Theorem 5.13). We summarize this proof idea (�) with
the following schematic:{upper tail bound on

# rainbow stars in 𝜓

}
second moment−−−−−−−−−−−−−−−−−→

#(uncolored) stars in 𝑍

{lower tail bound on # rainbow
stars in ℛ𝑠[𝐸(𝑍) × [3]] \ 𝜓

}
.

We formalize the above proof sketch in what follows.

Proof of Lemma 5.25. Letℰ be the event that there is a color𝜓 that fails the conditions of the Lemma; that is,
suppose 𝜓 has 𝛽1𝑛2 rainbow stars but less than 𝛽2𝑛3 rainbow constellations. Let 𝛾2 be a sufficiently small
constant to be determined. By Theorem 5.18, there exists constant 𝑡(𝛾2), 𝛾1(𝛾2), 𝑆1 , . . . , 𝑆𝑡 ⊂ 𝐸(𝐾𝑛) × [3]
and 𝑓 : 𝒫(𝐸(𝐾𝑛) × [3])𝑡 → 𝐸(𝐾𝑛) × [3] such that:

(†) For every partial 3-colouring 𝜓 of 𝐾𝑛 with fewer than Ω(𝑛3) rainbow constellations, there are
𝑆1 , . . . , 𝑆𝑡 ⊂ 𝐸(𝐾𝑛) × [3] consisting of at most 𝑜(𝑛3/2) edges each such that 𝜓 ⊂ 𝑓 (𝑆1 , . . . , 𝑆𝑡).

(‡) For every 𝑆1 , . . . , 𝑆𝑡 ⊂ 𝐸(𝐾𝑛) × [3], the set 𝑓 (𝑆1 , . . . , 𝑆𝑡) induces ≲ 𝛾2𝑛9 edges in ℛ𝑐 , and so by
Lemma 5.27 𝑓 (𝑆1 , . . . , 𝑆𝑡) also induces ≲ 𝛾1𝑛4 edges in ℛ𝑠 .

Let 𝛽 > 0 be a constant to be determined.
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Let 𝑆𝑍 be the the number of stars supported by edges of 𝑍. Then by Chebyshev’s inequality, it follows
that

P𝑍∼𝐺(𝑛,𝑝)[𝑆𝑍 > (1 + 𝛽)E[𝑆𝑍]] ≤
Var[𝑆𝑍]
𝛽2 E[𝑆𝑍]2

=
𝑂(𝑝7𝑛6 + 𝑝6𝑛5)

𝛽2𝑝4𝑛4
= 𝑜(1). (7)

That is, with high probability we have that 𝑆𝑍 ≤ (1 + 𝛽)E[𝑆𝑍] = (1 + 𝛽)𝑝4
(𝑛
2

)
. That is, there are at

most 6(1 + 𝛽)𝑝4
(𝑛
4

)
edges in ℛ𝑠[𝐸(𝑍) × [3]]. However, there are also at least 𝛽1𝑛2 edges in ℛ𝑠[𝜓]. Since

𝜓 = (𝐸(𝑍) × [3]) ∩ 𝑓 (𝑆1 , . . . , 𝑆𝑡) it follows that by choosing 𝛽 sufficiently small we can ensure that

|𝐸(ℛ𝑠[𝐸(𝑍) × [3]] \ ℛ𝑠[ 𝑓 (𝑆1 , . . . , 𝑆𝑡)])| ≤ 3𝑝4
(
𝑛

4

)
.

However, since by assumptions |𝐸(ℛ𝑠[ 𝑓 (𝑆1 , . . . , 𝑆𝑡)])| ≤ 𝛾1𝑛4 by (‡), it follows that

E |𝐸(ℛ𝑠[𝐸(𝑍) × [3]] \ ℛ𝑠[ 𝑓 (𝑆1 , . . . , 𝑆𝑡)])| ≥ 6(1 − 𝛾1)𝑝4
(
𝑛

4

)
.

By choosing 𝛾2 sufficiently small we can ensure that 𝛾1 ≤ 1
3 . To finish up, we apply Janson’s inequality

to the random variable 𝛼(𝑆1 , . . . , 𝑆𝑡) := |𝐸(ℛ𝑠[𝐸(𝑍) × [3]] \ ℛ𝑠[ 𝑓 (𝑆1 , . . . , 𝑆𝑡)])|. It is not difficult to check
that the denominator in Janson’s inequality (Theorem 5.13) is Θ(𝑝7𝑛6) = 𝑛5/2 (this is essentially the same
calculation that went in (7), which gives

P𝑍∼𝐺(𝑛,𝑝)

[
𝛼 ≤ 3𝑝4

(
𝑛

4

)]
= P𝑍∼𝐺(𝑛,𝑝)

[
𝛼 ≤ E[𝛼] − 𝑝4

(
𝑛

4

)]
≤ exp

(
−𝑂

(
𝑛2

𝑛5/2

))
= exp

(
−𝑂(𝑛3/2)

)
.

To finish up, let 𝜋 denote projection onto the first coordinate (i.e. the process of extracting the
underyling subgraph). We union bound over all the containers to get that

P[ℰ] = P[𝑆𝑍 > (1 + 𝛽)E[𝑆𝑍]] +
∑

(𝑆1 ,...,𝑆𝑡 )
P

[
𝜋(𝑆1 ∪ . . . ∪ 𝑆𝑡) ⊂ 𝑍 ∩ 𝛼(𝑆1 , . . . , 𝑆𝑡) ≤ 3𝑝4

(
𝑛

4

)]
.

Finally, note that 𝜋(𝑆1 ∪ . . . ∪ 𝑆𝑡) ⊂ 𝑍 is an increasing event, while 𝛼(𝑆1 , . . . , 𝑆𝑡) ≤ 3𝑝4
(𝑛
4

)
is a decreasing

event. Consequently, we can use Harris’ inequality to write:

P[ℰ] ≤ P[𝑆𝑍 > (1 + 𝛽)E[𝑆𝑍]] +
∑

(𝑆1 ,...,𝑆𝑡 )
P [𝜋(𝑆1 ∪ . . . ∪ 𝑆𝑡) ⊂ 𝑍]P

[
𝛼(𝑆1 , . . . , 𝑆𝑡) ≤ 3𝑝4

(
𝑛

4

)]
≤ 𝑜(1) + exp

(
−𝑂(𝑛3/2)

) 𝑜(𝑛3/2)∑
𝑚=0

(
𝑛2

𝑚

)
· (3 · 2𝑡)𝑚

≤ 𝑜(1) + exp
(
−𝑂(𝑛3/2)

)
exp

(
𝑜(𝑛3/2)

)
= 𝑜(1),

as desired. □
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5.3 Generalizing the argument to prove Theorem 5.4

In the general setting of 𝐻 and 𝑟 ≥ 3, the most natural generalizations of star would be the following
gadget, in which we “glue” together (𝑟 − 1) copies of 𝐻 with an edge missing:

𝑢 𝑣

𝐻 \ 𝑒4
𝐻 \ 𝑒3

𝐻 \ 𝑒2
𝐻 \ 𝑒1

It is also natural to define the analogous notion of constellations, where we take a “blow-up” of the
star relative to 𝐻; that is, we glue one copy of the star to each edge of 𝐻. We can basically repeat the same
proof as before, but now each of Subsection 5.1 and Subsection 5.2 becomes considerably more involved;
in these sections we often appealed to the facts such as “ a constellation 𝜃 supported on triangle 𝑇 has
the property that 𝑣 ∈ 𝜃 \ 𝑇 has degree 2” to bound certain quantities, which is no longer true for these
general stars and constellations. Overall, it is much more difficult to count these generalized gadgets and
their intersection patterns, which accounts for the technical proofs in [FKSS22].

There are additional technicalities posed for 𝑟 large and 𝐻 such that |𝐸(𝐻)| is large, in which the way
we built 𝒯 in Subsection 5.1 gives containers that are not efficient enough. We refer the interested reader
to [FKSS22, Section 5] for the details on how to construct 𝒯 and its associated containers more efficiently.
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